Home | History | Annotate | Line # | Download | only in cavium
octeon_intr.c revision 1.26
      1  1.26  riastrad /*	$NetBSD: octeon_intr.c,v 1.26 2022/03/26 19:38:00 riastradh Exp $	*/
      2   1.1    hikaru /*
      3   1.1    hikaru  * Copyright 2001, 2002 Wasabi Systems, Inc.
      4   1.1    hikaru  * All rights reserved.
      5   1.1    hikaru  *
      6   1.1    hikaru  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      7   1.1    hikaru  *
      8   1.1    hikaru  * Redistribution and use in source and binary forms, with or without
      9   1.1    hikaru  * modification, are permitted provided that the following conditions
     10   1.1    hikaru  * are met:
     11   1.1    hikaru  * 1. Redistributions of source code must retain the above copyright
     12   1.1    hikaru  *    notice, this list of conditions and the following disclaimer.
     13   1.1    hikaru  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    hikaru  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    hikaru  *    documentation and/or other materials provided with the distribution.
     16   1.1    hikaru  * 3. All advertising materials mentioning features or use of this software
     17   1.1    hikaru  *    must display the following acknowledgement:
     18   1.1    hikaru  *      This product includes software developed for the NetBSD Project by
     19   1.1    hikaru  *      Wasabi Systems, Inc.
     20   1.1    hikaru  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     21   1.1    hikaru  *    or promote products derived from this software without specific prior
     22   1.1    hikaru  *    written permission.
     23   1.1    hikaru  *
     24   1.1    hikaru  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     25   1.1    hikaru  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.1    hikaru  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.1    hikaru  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28   1.1    hikaru  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.1    hikaru  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.1    hikaru  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.1    hikaru  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.1    hikaru  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.1    hikaru  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.1    hikaru  * POSSIBILITY OF SUCH DAMAGE.
     35   1.1    hikaru  */
     36   1.1    hikaru 
     37   1.1    hikaru /*
     38   1.1    hikaru  * Platform-specific interrupt support for the MIPS Malta.
     39   1.1    hikaru  */
     40   1.1    hikaru 
     41   1.6     skrll #include "opt_multiprocessor.h"
     42   1.6     skrll 
     43   1.4      matt #include "cpunode.h"
     44   1.1    hikaru #define __INTR_PRIVATE
     45   1.1    hikaru 
     46   1.1    hikaru #include <sys/cdefs.h>
     47  1.26  riastrad __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.26 2022/03/26 19:38:00 riastradh Exp $");
     48   1.1    hikaru 
     49   1.1    hikaru #include <sys/param.h>
     50   1.1    hikaru #include <sys/cpu.h>
     51   1.1    hikaru #include <sys/systm.h>
     52   1.1    hikaru #include <sys/device.h>
     53   1.1    hikaru #include <sys/intr.h>
     54   1.1    hikaru #include <sys/kernel.h>
     55   1.3      matt #include <sys/kmem.h>
     56   1.3      matt #include <sys/atomic.h>
     57  1.25  riastrad #include <sys/xcall.h>
     58   1.1    hikaru 
     59   1.1    hikaru #include <lib/libkern/libkern.h>
     60   1.1    hikaru 
     61   1.1    hikaru #include <mips/locore.h>
     62   1.1    hikaru 
     63   1.1    hikaru #include <mips/cavium/dev/octeon_ciureg.h>
     64   1.1    hikaru #include <mips/cavium/octeonvar.h>
     65   1.1    hikaru 
     66   1.1    hikaru /*
     67  1.21    simonb  * XXX:
     68  1.21    simonb  * Force all interrupts (except clock intrs and IPIs) to be routed
     69  1.21    simonb  * through cpu0 until MP on MIPS is more stable.
     70  1.21    simonb  */
     71  1.21    simonb #define	OCTEON_CPU0_INTERRUPTS
     72  1.21    simonb 
     73  1.21    simonb 
     74  1.21    simonb /*
     75   1.1    hikaru  * This is a mask of bits to clear in the SR when we go to a
     76   1.1    hikaru  * given hardware interrupt priority level.
     77   1.1    hikaru  */
     78   1.1    hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
     79   1.1    hikaru     .sr_bits = {
     80   1.1    hikaru 	[IPL_NONE] =		0,
     81   1.1    hikaru 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
     82   1.1    hikaru 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
     83   1.1    hikaru 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
     84   1.1    hikaru 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     85   1.8     skrll 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     86   1.3      matt 	[IPL_DDB] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     87   1.3      matt 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     88   1.1    hikaru 	[IPL_HIGH] =		MIPS_INT_MASK,
     89   1.1    hikaru     },
     90   1.1    hikaru };
     91   1.1    hikaru 
     92  1.22    simonb static const char * octeon_intrnames[NIRQS] = {
     93   1.1    hikaru 	"workq 0",
     94   1.1    hikaru 	"workq 1",
     95   1.1    hikaru 	"workq 2",
     96   1.1    hikaru 	"workq 3",
     97   1.1    hikaru 	"workq 4",
     98   1.1    hikaru 	"workq 5",
     99   1.1    hikaru 	"workq 6",
    100   1.1    hikaru 	"workq 7",
    101   1.1    hikaru 	"workq 8",
    102   1.1    hikaru 	"workq 9",
    103   1.1    hikaru 	"workq 10",
    104   1.1    hikaru 	"workq 11",
    105   1.1    hikaru 	"workq 12",
    106   1.1    hikaru 	"workq 13",
    107   1.1    hikaru 	"workq 14",
    108   1.1    hikaru 	"workq 15",
    109   1.1    hikaru 	"gpio 0",
    110   1.1    hikaru 	"gpio 1",
    111   1.1    hikaru 	"gpio 2",
    112   1.1    hikaru 	"gpio 3",
    113   1.1    hikaru 	"gpio 4",
    114   1.1    hikaru 	"gpio 5",
    115   1.1    hikaru 	"gpio 6",
    116   1.1    hikaru 	"gpio 7",
    117   1.1    hikaru 	"gpio 8",
    118   1.1    hikaru 	"gpio 9",
    119   1.1    hikaru 	"gpio 10",
    120   1.1    hikaru 	"gpio 11",
    121   1.1    hikaru 	"gpio 12",
    122   1.1    hikaru 	"gpio 13",
    123   1.1    hikaru 	"gpio 14",
    124   1.1    hikaru 	"gpio 15",
    125   1.1    hikaru 	"mbox 0-15",
    126   1.1    hikaru 	"mbox 16-31",
    127   1.1    hikaru 	"uart 0",
    128   1.1    hikaru 	"uart 1",
    129   1.1    hikaru 	"pci inta",
    130   1.1    hikaru 	"pci intb",
    131   1.1    hikaru 	"pci intc",
    132   1.1    hikaru 	"pci intd",
    133   1.1    hikaru 	"pci msi 0-15",
    134   1.1    hikaru 	"pci msi 16-31",
    135   1.1    hikaru 	"pci msi 32-47",
    136   1.1    hikaru 	"pci msi 48-63",
    137   1.1    hikaru 	"wdog summary",
    138   1.1    hikaru 	"twsi",
    139   1.1    hikaru 	"rml",
    140   1.1    hikaru 	"trace",
    141   1.1    hikaru 	"gmx drop",
    142   1.1    hikaru 	"reserved",
    143   1.1    hikaru 	"ipd drop",
    144   1.1    hikaru 	"reserved",
    145   1.1    hikaru 	"timer 0",
    146   1.1    hikaru 	"timer 1",
    147   1.1    hikaru 	"timer 2",
    148   1.1    hikaru 	"timer 3",
    149   1.1    hikaru 	"usb",
    150   1.1    hikaru 	"pcm/tdm",
    151   1.1    hikaru 	"mpi/spi",
    152   1.1    hikaru 	"reserved",
    153   1.1    hikaru 	"reserved",
    154   1.1    hikaru 	"reserved",
    155   1.1    hikaru 	"reserved",
    156   1.1    hikaru 	"reserved",
    157   1.1    hikaru };
    158   1.1    hikaru 
    159   1.1    hikaru struct octeon_intrhand {
    160   1.1    hikaru 	int (*ih_func)(void *);
    161   1.1    hikaru 	void *ih_arg;
    162   1.1    hikaru 	int ih_irq;
    163   1.1    hikaru 	int ih_ipl;
    164   1.1    hikaru };
    165   1.1    hikaru 
    166   1.3      matt #ifdef MULTIPROCESSOR
    167   1.3      matt static int octeon_send_ipi(struct cpu_info *, int);
    168   1.3      matt static int octeon_ipi_intr(void *);
    169   1.3      matt 
    170  1.24     skrll static struct octeon_intrhand ipi_intrhands[2] = {
    171   1.3      matt 	[0] = {
    172   1.3      matt 		.ih_func = octeon_ipi_intr,
    173   1.3      matt 		.ih_arg = (void *)(uintptr_t)__BITS(15,0),
    174  1.12    simonb 		.ih_irq = CIU_INT_MBOX_15_0,
    175   1.3      matt 		.ih_ipl = IPL_HIGH,
    176   1.3      matt 	},
    177  1.23  jmcneill 	[1] = {
    178  1.23  jmcneill 		.ih_func = octeon_ipi_intr,
    179  1.23  jmcneill 		.ih_arg = (void *)(uintptr_t)__BITS(31,16),
    180  1.23  jmcneill 		.ih_irq = CIU_INT_MBOX_31_16,
    181  1.23  jmcneill 		.ih_ipl = IPL_SCHED,
    182  1.23  jmcneill 	},
    183   1.1    hikaru };
    184  1.23  jmcneill 
    185  1.23  jmcneill static int ipi_prio[NIPIS] = {
    186  1.23  jmcneill 	[IPI_NOP] = IPL_HIGH,
    187  1.23  jmcneill 	[IPI_AST] = IPL_HIGH,
    188  1.23  jmcneill 	[IPI_SHOOTDOWN] = IPL_SCHED,
    189  1.23  jmcneill 	[IPI_SYNCICACHE] = IPL_HIGH,
    190  1.23  jmcneill 	[IPI_KPREEMPT] = IPL_HIGH,
    191  1.23  jmcneill 	[IPI_SUSPEND] = IPL_HIGH,
    192  1.23  jmcneill 	[IPI_HALT] = IPL_HIGH,
    193  1.23  jmcneill 	[IPI_XCALL] = IPL_HIGH,
    194  1.23  jmcneill 	[IPI_GENERIC] = IPL_HIGH,
    195  1.23  jmcneill 	[IPI_WDOG] = IPL_HIGH,
    196  1.23  jmcneill };
    197  1.23  jmcneill 
    198   1.3      matt #endif
    199   1.1    hikaru 
    200  1.22    simonb static struct octeon_intrhand *octciu_intrs[NIRQS] = {
    201   1.3      matt #ifdef MULTIPROCESSOR
    202  1.12    simonb 	[CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
    203  1.23  jmcneill 	[CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
    204   1.3      matt #endif
    205   1.1    hikaru };
    206   1.1    hikaru 
    207  1.22    simonb static kmutex_t octeon_intr_lock;
    208   1.1    hikaru 
    209  1.18  jmcneill #if defined(MULTIPROCESSOR)
    210  1.18  jmcneill #define	OCTEON_NCPU	MAXCPUS
    211  1.18  jmcneill #else
    212  1.18  jmcneill #define	OCTEON_NCPU	1
    213   1.3      matt #endif
    214   1.1    hikaru 
    215  1.18  jmcneill struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
    216   1.1    hikaru 
    217   1.4      matt static void
    218  1.18  jmcneill octeon_intr_setup(void)
    219   1.4      matt {
    220  1.18  jmcneill 	struct cpu_softc *cpu;
    221  1.18  jmcneill 	int cpunum;
    222   1.4      matt 
    223  1.18  jmcneill #define X(a)	MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
    224   1.4      matt 
    225  1.18  jmcneill 	for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    226  1.18  jmcneill 		cpu = &octeon_cpu_softc[cpunum];
    227   1.4      matt 
    228  1.18  jmcneill 		cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
    229  1.18  jmcneill 		cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
    230  1.18  jmcneill 		cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
    231   1.4      matt 
    232  1.18  jmcneill 		cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
    233   1.4      matt 
    234  1.18  jmcneill 		cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
    235  1.18  jmcneill 		cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
    236  1.18  jmcneill 		cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
    237   1.4      matt 
    238  1.18  jmcneill 		cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
    239  1.18  jmcneill 		cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
    240  1.18  jmcneill 		cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
    241   1.4      matt 
    242  1.18  jmcneill 		cpu->cpu_wdog = X(CIU_WDOG(cpunum));
    243  1.18  jmcneill 		cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
    244   1.4      matt 
    245  1.18  jmcneill #ifdef MULTIPROCESSOR
    246  1.18  jmcneill 		cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
    247  1.18  jmcneill 		cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
    248  1.18  jmcneill #endif
    249  1.18  jmcneill 	}
    250   1.4      matt 
    251  1.18  jmcneill #undef X
    252   1.4      matt 
    253   1.4      matt }
    254   1.1    hikaru 
    255   1.3      matt void
    256   1.3      matt octeon_intr_init(struct cpu_info *ci)
    257   1.3      matt {
    258   1.3      matt 	const int cpunum = cpu_index(ci);
    259  1.18  jmcneill 	struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
    260   1.3      matt 	const char * const xname = cpu_name(ci);
    261  1.16  jmcneill 	int bank;
    262   1.1    hikaru 
    263  1.18  jmcneill 	cpu->cpu_ci = ci;
    264  1.18  jmcneill 	ci->ci_softc = cpu;
    265  1.18  jmcneill 
    266  1.18  jmcneill 	KASSERT(cpunum == ci->ci_cpuid);
    267   1.1    hikaru 
    268   1.3      matt 	if (ci->ci_cpuid == 0) {
    269   1.4      matt 		ipl_sr_map = octeon_ipl_sr_map;
    270   1.3      matt 		mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
    271   1.3      matt #ifdef MULTIPROCESSOR
    272   1.3      matt 		mips_locoresw.lsw_send_ipi = octeon_send_ipi;
    273   1.3      matt #endif
    274  1.18  jmcneill 
    275  1.18  jmcneill 		octeon_intr_setup();
    276   1.1    hikaru 	}
    277   1.1    hikaru 
    278   1.3      matt #ifdef MULTIPROCESSOR
    279   1.3      matt 	// Enable the IPIs
    280  1.20  jmcneill 	cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
    281  1.23  jmcneill 	cpu->cpu_ip3_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
    282   1.1    hikaru #endif
    283   1.1    hikaru 
    284  1.16  jmcneill 	if (ci->ci_dev) {
    285  1.16  jmcneill 		for (bank = 0; bank < NBANKS; bank++) {
    286  1.16  jmcneill 			aprint_verbose_dev(ci->ci_dev,
    287  1.16  jmcneill 			    "enabling intr masks %u "
    288  1.16  jmcneill 			    " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
    289  1.16  jmcneill 			    bank,
    290  1.18  jmcneill 			    cpu->cpu_ip2_enable[bank],
    291  1.18  jmcneill 			    cpu->cpu_ip3_enable[bank],
    292  1.18  jmcneill 			    cpu->cpu_ip4_enable[bank]);
    293  1.16  jmcneill 		}
    294  1.16  jmcneill 	}
    295  1.16  jmcneill 
    296  1.16  jmcneill 	for (bank = 0; bank < NBANKS; bank++) {
    297  1.18  jmcneill 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    298  1.18  jmcneill 		mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    299  1.18  jmcneill 		mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    300  1.16  jmcneill 	}
    301   1.3      matt 
    302   1.3      matt #ifdef MULTIPROCESSOR
    303   1.5      matt 	mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
    304   1.3      matt #endif
    305   1.1    hikaru 
    306  1.15  jmcneill 	for (int i = 0; i < NIRQS; i++) {
    307  1.15  jmcneill 		if (octeon_intrnames[i] == NULL)
    308  1.15  jmcneill 			octeon_intrnames[i] = kmem_asprintf("irq %d", i);
    309   1.3      matt 		evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
    310   1.3      matt 		    EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
    311   1.1    hikaru 	}
    312   1.1    hikaru }
    313   1.1    hikaru 
    314   1.1    hikaru void
    315   1.1    hikaru octeon_cal_timer(int corefreq)
    316   1.1    hikaru {
    317   1.1    hikaru 	/* Compute the number of cycles per second. */
    318   1.1    hikaru 	curcpu()->ci_cpu_freq = corefreq;
    319   1.1    hikaru 
    320   1.1    hikaru 	/* Compute the number of ticks for hz. */
    321   1.1    hikaru 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
    322   1.1    hikaru 
    323   1.1    hikaru 	/* Compute the delay divisor and reciprical. */
    324   1.1    hikaru 	curcpu()->ci_divisor_delay =
    325   1.1    hikaru 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
    326   1.1    hikaru #if 0
    327   1.1    hikaru 	MIPS_SET_CI_RECIPRICAL(curcpu());
    328   1.1    hikaru #endif
    329   1.1    hikaru 
    330   1.1    hikaru 	mips3_cp0_count_write(0);
    331   1.1    hikaru 	mips3_cp0_compare_write(0);
    332   1.1    hikaru }
    333   1.1    hikaru 
    334   1.1    hikaru void *
    335   1.3      matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
    336   1.1    hikaru {
    337   1.1    hikaru 	struct octeon_intrhand *ih;
    338  1.18  jmcneill 	struct cpu_softc *cpu;
    339  1.21    simonb #ifndef OCTEON_CPU0_INTERRUPTS
    340  1.18  jmcneill 	int cpunum;
    341  1.21    simonb #endif
    342   1.1    hikaru 
    343   1.1    hikaru 	if (irq >= NIRQS)
    344   1.1    hikaru 		panic("octeon_intr_establish: bogus IRQ %d", irq);
    345   1.3      matt 	if (ipl < IPL_VM)
    346   1.3      matt 		panic("octeon_intr_establish: bogus IPL %d", ipl);
    347   1.1    hikaru 
    348   1.3      matt 	ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
    349   1.1    hikaru 	if (ih == NULL)
    350   1.1    hikaru 		return (NULL);
    351   1.1    hikaru 
    352   1.1    hikaru 	ih->ih_func = func;
    353   1.1    hikaru 	ih->ih_arg = arg;
    354   1.1    hikaru 	ih->ih_irq = irq;
    355   1.3      matt 	ih->ih_ipl = ipl;
    356   1.1    hikaru 
    357   1.3      matt 	mutex_enter(&octeon_intr_lock);
    358   1.1    hikaru 
    359   1.1    hikaru 	/*
    360   1.3      matt 	 * First, make it known.
    361   1.1    hikaru 	 */
    362  1.11    simonb 	KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
    363  1.11    simonb 	    irq, octciu_intrs[irq]);
    364   1.3      matt 
    365  1.26  riastrad 	atomic_store_release(&octciu_intrs[irq], ih);
    366   1.1    hikaru 
    367   1.1    hikaru 	/*
    368   1.1    hikaru 	 * Now enable it.
    369   1.1    hikaru 	 */
    370  1.15  jmcneill 	const int bank = irq / 64;
    371  1.15  jmcneill 	const uint64_t irq_mask = __BIT(irq % 64);
    372   1.3      matt 
    373   1.3      matt 	switch (ipl) {
    374   1.3      matt 	case IPL_VM:
    375  1.18  jmcneill 		cpu = &octeon_cpu_softc[0];
    376  1.18  jmcneill 		cpu->cpu_ip2_enable[bank] |= irq_mask;
    377  1.18  jmcneill 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    378   1.3      matt 		break;
    379   1.1    hikaru 
    380   1.3      matt 	case IPL_SCHED:
    381  1.21    simonb #ifdef OCTEON_CPU0_INTERRUPTS
    382  1.21    simonb 		cpu = &octeon_cpu_softc[0];
    383  1.21    simonb 		cpu->cpu_ip3_enable[bank] |= irq_mask;
    384  1.21    simonb 		mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    385  1.21    simonb #else	/* OCTEON_CPU0_INTERRUPTS */
    386  1.18  jmcneill 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    387  1.18  jmcneill 			cpu = &octeon_cpu_softc[cpunum];
    388  1.18  jmcneill 			if (cpu->cpu_ci == NULL)
    389  1.18  jmcneill 				break;
    390  1.18  jmcneill 			cpu->cpu_ip3_enable[bank] |= irq_mask;
    391  1.18  jmcneill 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    392  1.18  jmcneill 		}
    393  1.21    simonb #endif	/* OCTEON_CPU0_INTERRUPTS */
    394   1.3      matt 		break;
    395   1.3      matt 
    396   1.3      matt 	case IPL_DDB:
    397   1.3      matt 	case IPL_HIGH:
    398  1.21    simonb #ifdef OCTEON_CPU0_INTERRUPTS
    399  1.21    simonb 		cpu = &octeon_cpu_softc[0];
    400  1.21    simonb 		cpu->cpu_ip4_enable[bank] |= irq_mask;
    401  1.21    simonb 		mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    402  1.21    simonb #else	/* OCTEON_CPU0_INTERRUPTS */
    403  1.18  jmcneill 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    404  1.18  jmcneill 			cpu = &octeon_cpu_softc[cpunum];
    405  1.18  jmcneill 			if (cpu->cpu_ci == NULL)
    406  1.18  jmcneill 				break;
    407  1.18  jmcneill 			cpu->cpu_ip4_enable[bank] |= irq_mask;
    408  1.18  jmcneill 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    409  1.18  jmcneill 		}
    410  1.21    simonb #endif	/* OCTEON_CPU0_INTERRUPTS */
    411   1.3      matt 		break;
    412   1.1    hikaru 	}
    413   1.1    hikaru 
    414   1.3      matt 	mutex_exit(&octeon_intr_lock);
    415   1.3      matt 
    416   1.3      matt 	return ih;
    417   1.1    hikaru }
    418   1.1    hikaru 
    419   1.1    hikaru void
    420   1.1    hikaru octeon_intr_disestablish(void *cookie)
    421   1.1    hikaru {
    422   1.3      matt 	struct octeon_intrhand * const ih = cookie;
    423  1.18  jmcneill 	struct cpu_softc *cpu;
    424   1.3      matt 	const int irq = ih->ih_irq & (NIRQS-1);
    425   1.3      matt 	const int ipl = ih->ih_ipl;
    426  1.18  jmcneill 	int cpunum;
    427   1.1    hikaru 
    428   1.3      matt 	mutex_enter(&octeon_intr_lock);
    429   1.1    hikaru 
    430   1.1    hikaru 	/*
    431   1.3      matt 	 * First disable it.
    432   1.1    hikaru 	 */
    433  1.15  jmcneill 	const int bank = irq / 64;
    434  1.15  jmcneill 	const uint64_t irq_mask = ~__BIT(irq % 64);
    435   1.3      matt 
    436   1.3      matt 	switch (ipl) {
    437   1.3      matt 	case IPL_VM:
    438  1.18  jmcneill 		cpu = &octeon_cpu_softc[0];
    439  1.18  jmcneill 		cpu->cpu_ip2_enable[bank] &= ~irq_mask;
    440  1.18  jmcneill 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    441   1.3      matt 		break;
    442   1.3      matt 
    443   1.3      matt 	case IPL_SCHED:
    444  1.18  jmcneill 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    445  1.18  jmcneill 			cpu = &octeon_cpu_softc[cpunum];
    446  1.18  jmcneill 			if (cpu->cpu_ci == NULL)
    447  1.18  jmcneill 				break;
    448  1.18  jmcneill 			cpu->cpu_ip3_enable[bank] &= ~irq_mask;
    449  1.18  jmcneill 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    450  1.18  jmcneill 		}
    451   1.3      matt 		break;
    452   1.3      matt 
    453   1.3      matt 	case IPL_DDB:
    454   1.3      matt 	case IPL_HIGH:
    455  1.18  jmcneill 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    456  1.18  jmcneill 			cpu = &octeon_cpu_softc[cpunum];
    457  1.18  jmcneill 			if (cpu->cpu_ci == NULL)
    458  1.18  jmcneill 				break;
    459  1.18  jmcneill 			cpu->cpu_ip4_enable[bank] &= ~irq_mask;
    460  1.18  jmcneill 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    461  1.18  jmcneill 		}
    462   1.3      matt 		break;
    463   1.3      matt 	}
    464   1.1    hikaru 
    465  1.25  riastrad 	atomic_store_relaxed(&octciu_intrs[irq], NULL);
    466   1.3      matt 
    467   1.3      matt 	mutex_exit(&octeon_intr_lock);
    468   1.1    hikaru 
    469  1.25  riastrad 	/*
    470  1.25  riastrad 	 * Wait until the interrupt handler is no longer running on all
    471  1.25  riastrad 	 * CPUs before freeing ih and returning.
    472  1.25  riastrad 	 */
    473  1.25  riastrad 	xc_barrier(0);
    474   1.3      matt 	kmem_free(ih, sizeof(*ih));
    475   1.1    hikaru }
    476   1.1    hikaru 
    477   1.1    hikaru void
    478   1.1    hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
    479   1.1    hikaru {
    480   1.3      matt 	struct cpu_info * const ci = curcpu();
    481   1.3      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    482  1.15  jmcneill 	int bank;
    483   1.3      matt 
    484   1.4      matt 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    485   1.3      matt 	KASSERT((ipending & ~MIPS_INT_MASK) == 0);
    486   1.3      matt 	KASSERT(ipending & MIPS_HARD_INT_MASK);
    487  1.15  jmcneill 	uint64_t hwpend[2] = { 0, 0 };
    488  1.15  jmcneill 
    489  1.15  jmcneill 	const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
    490   1.1    hikaru 
    491   1.3      matt 	if (ipending & MIPS_INT_MASK_2) {
    492  1.18  jmcneill 		hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
    493  1.18  jmcneill 		    & cpu->cpu_ip4_enable[0];
    494  1.18  jmcneill 		hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
    495   1.3      matt 	} else if (ipending & MIPS_INT_MASK_1) {
    496  1.18  jmcneill 		hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
    497  1.18  jmcneill 		    & cpu->cpu_ip3_enable[0];
    498  1.18  jmcneill 		hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
    499   1.3      matt 	} else if (ipending & MIPS_INT_MASK_0) {
    500  1.18  jmcneill 		hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
    501  1.18  jmcneill 		    & cpu->cpu_ip2_enable[0];
    502  1.18  jmcneill 		hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
    503   1.3      matt 	} else {
    504   1.3      matt 		panic("octeon_iointr: unexpected ipending %#x", ipending);
    505   1.3      matt 	}
    506  1.15  jmcneill 	for (bank = 0; bank <= 1; bank++) {
    507  1.15  jmcneill 		while (hwpend[bank] != 0) {
    508  1.15  jmcneill 			const int bit = ffs64(hwpend[bank]) - 1;
    509  1.15  jmcneill 			const int irq = (bank * 64) + bit;
    510  1.15  jmcneill 			hwpend[bank] &= ~__BIT(bit);
    511  1.15  jmcneill 
    512  1.25  riastrad 			struct octeon_intrhand * const ih =
    513  1.26  riastrad 			    atomic_load_consume(&octciu_intrs[irq]);
    514  1.15  jmcneill 			cpu->cpu_intr_evs[irq].ev_count++;
    515  1.15  jmcneill 			if (__predict_true(ih != NULL)) {
    516  1.15  jmcneill #ifdef MULTIPROCESSOR
    517  1.15  jmcneill 				if (ipl == IPL_VM) {
    518  1.15  jmcneill 					KERNEL_LOCK(1, NULL);
    519  1.15  jmcneill #endif
    520  1.15  jmcneill 					(*ih->ih_func)(ih->ih_arg);
    521  1.15  jmcneill #ifdef MULTIPROCESSOR
    522  1.15  jmcneill 					KERNEL_UNLOCK_ONE(NULL);
    523  1.15  jmcneill 				} else {
    524  1.15  jmcneill 					(*ih->ih_func)(ih->ih_arg);
    525  1.15  jmcneill 				}
    526  1.15  jmcneill #endif
    527  1.15  jmcneill 				KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    528   1.3      matt 			}
    529   1.3      matt 		}
    530   1.3      matt 	}
    531   1.4      matt 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    532   1.3      matt }
    533   1.3      matt 
    534   1.3      matt #ifdef MULTIPROCESSOR
    535   1.3      matt __CTASSERT(NIPIS < 16);
    536   1.3      matt 
    537   1.3      matt int
    538   1.3      matt octeon_ipi_intr(void *arg)
    539   1.3      matt {
    540   1.3      matt 	struct cpu_info * const ci = curcpu();
    541   1.3      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    542  1.23  jmcneill 	const uint32_t mbox_mask = (uintptr_t) arg;
    543  1.23  jmcneill 	uint32_t ipi_mask = mbox_mask;
    544   1.4      matt 
    545  1.23  jmcneill 	KASSERTMSG((mbox_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
    546  1.23  jmcneill 	    "mbox_mask %#"PRIx32" cpl %d", mbox_mask, ci->ci_cpl);
    547   1.3      matt 
    548  1.20  jmcneill 	ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
    549  1.20  jmcneill 	if (ipi_mask == 0)
    550   1.4      matt 		return 0;
    551   1.4      matt 
    552  1.20  jmcneill 	mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
    553   1.3      matt 
    554  1.23  jmcneill 	KASSERT(__SHIFTOUT(ipi_mask, mbox_mask) < __BIT(NIPIS));
    555   1.3      matt 
    556   1.4      matt #if NWDOG > 0
    557   1.4      matt 	// Handle WDOG requests ourselves.
    558   1.4      matt 	if (ipi_mask & __BIT(IPI_WDOG)) {
    559   1.4      matt 		softint_schedule(cpu->cpu_wdog_sih);
    560   1.4      matt 		atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
    561   1.4      matt 		ipi_mask &= ~__BIT(IPI_WDOG);
    562   1.4      matt 		ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
    563   1.4      matt 		if (__predict_true(ipi_mask == 0))
    564   1.4      matt 			return 1;
    565   1.4      matt 	}
    566   1.4      matt #endif
    567   1.4      matt 
    568   1.3      matt 	/* if the request is clear, it was previously processed */
    569   1.3      matt 	if ((ci->ci_request_ipis & ipi_mask) == 0)
    570   1.3      matt 		return 0;
    571   1.3      matt 
    572   1.3      matt 	atomic_or_64(&ci->ci_active_ipis, ipi_mask);
    573   1.3      matt 	atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
    574   1.3      matt 
    575  1.23  jmcneill 	ipi_process(ci, __SHIFTOUT(ipi_mask, mbox_mask));
    576   1.3      matt 
    577   1.3      matt 	atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
    578   1.3      matt 
    579   1.3      matt 	return 1;
    580   1.3      matt }
    581   1.1    hikaru 
    582   1.3      matt int
    583   1.3      matt octeon_send_ipi(struct cpu_info *ci, int req)
    584   1.3      matt {
    585   1.3      matt 	KASSERT(req < NIPIS);
    586   1.3      matt 	if (ci == NULL) {
    587   1.4      matt 		CPU_INFO_ITERATOR cii;
    588   1.4      matt 		for (CPU_INFO_FOREACH(cii, ci)) {
    589   1.4      matt 			if (ci != curcpu()) {
    590   1.4      matt 				octeon_send_ipi(ci, req);
    591   1.4      matt 			}
    592   1.4      matt 		}
    593   1.4      matt 		return 0;
    594   1.1    hikaru 	}
    595   1.4      matt 	KASSERT(cold || ci->ci_softc != NULL);
    596   1.4      matt 	if (ci->ci_softc == NULL)
    597   1.4      matt 		return -1;
    598   1.3      matt 
    599   1.3      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    600  1.23  jmcneill 	const u_int ipi_shift = ipi_prio[req] == IPL_SCHED ? 16 : 0;
    601  1.23  jmcneill 	const uint32_t ipi_mask = __BIT(req + ipi_shift);
    602   1.3      matt 
    603   1.7     skrll 	atomic_or_64(&ci->ci_request_ipis, ipi_mask);
    604   1.3      matt 
    605  1.20  jmcneill 	mips3_sd(cpu->cpu_mbox_set, ipi_mask);
    606  1.17  jmcneill 
    607   1.3      matt 	return 0;
    608   1.1    hikaru }
    609   1.3      matt #endif	/* MULTIPROCESSOR */
    610