octeon_intr.c revision 1.8 1 1.8 skrll /* $NetBSD: octeon_intr.c,v 1.8 2016/10/31 12:27:22 skrll Exp $ */
2 1.1 hikaru /*
3 1.1 hikaru * Copyright 2001, 2002 Wasabi Systems, Inc.
4 1.1 hikaru * All rights reserved.
5 1.1 hikaru *
6 1.1 hikaru * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 1.1 hikaru *
8 1.1 hikaru * Redistribution and use in source and binary forms, with or without
9 1.1 hikaru * modification, are permitted provided that the following conditions
10 1.1 hikaru * are met:
11 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
12 1.1 hikaru * notice, this list of conditions and the following disclaimer.
13 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
15 1.1 hikaru * documentation and/or other materials provided with the distribution.
16 1.1 hikaru * 3. All advertising materials mentioning features or use of this software
17 1.1 hikaru * must display the following acknowledgement:
18 1.1 hikaru * This product includes software developed for the NetBSD Project by
19 1.1 hikaru * Wasabi Systems, Inc.
20 1.1 hikaru * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 1.1 hikaru * or promote products derived from this software without specific prior
22 1.1 hikaru * written permission.
23 1.1 hikaru *
24 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hikaru * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hikaru * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 hikaru * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hikaru * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hikaru * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hikaru * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hikaru * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hikaru * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hikaru * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hikaru */
36 1.1 hikaru
37 1.1 hikaru /*
38 1.1 hikaru * Platform-specific interrupt support for the MIPS Malta.
39 1.1 hikaru */
40 1.1 hikaru
41 1.1 hikaru #include "opt_octeon.h"
42 1.6 skrll #include "opt_multiprocessor.h"
43 1.6 skrll
44 1.4 matt #include "cpunode.h"
45 1.1 hikaru #define __INTR_PRIVATE
46 1.1 hikaru
47 1.1 hikaru #include <sys/cdefs.h>
48 1.8 skrll __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.8 2016/10/31 12:27:22 skrll Exp $");
49 1.1 hikaru
50 1.1 hikaru #include <sys/param.h>
51 1.1 hikaru #include <sys/cpu.h>
52 1.1 hikaru #include <sys/systm.h>
53 1.1 hikaru #include <sys/device.h>
54 1.1 hikaru #include <sys/intr.h>
55 1.1 hikaru #include <sys/kernel.h>
56 1.3 matt #include <sys/kmem.h>
57 1.3 matt #include <sys/atomic.h>
58 1.1 hikaru
59 1.1 hikaru #include <lib/libkern/libkern.h>
60 1.1 hikaru
61 1.1 hikaru #include <mips/locore.h>
62 1.1 hikaru
63 1.1 hikaru #include <mips/cavium/dev/octeon_ciureg.h>
64 1.1 hikaru #include <mips/cavium/octeonvar.h>
65 1.1 hikaru
66 1.1 hikaru /*
67 1.1 hikaru * This is a mask of bits to clear in the SR when we go to a
68 1.1 hikaru * given hardware interrupt priority level.
69 1.1 hikaru */
70 1.1 hikaru static const struct ipl_sr_map octeon_ipl_sr_map = {
71 1.1 hikaru .sr_bits = {
72 1.1 hikaru [IPL_NONE] = 0,
73 1.1 hikaru [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
74 1.1 hikaru [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
75 1.1 hikaru [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
76 1.1 hikaru [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
77 1.8 skrll | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
78 1.3 matt [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
79 1.3 matt | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
80 1.1 hikaru [IPL_HIGH] = MIPS_INT_MASK,
81 1.1 hikaru },
82 1.1 hikaru };
83 1.1 hikaru
84 1.2 matt const char * const octeon_intrnames[NIRQS] = {
85 1.1 hikaru "workq 0",
86 1.1 hikaru "workq 1",
87 1.1 hikaru "workq 2",
88 1.1 hikaru "workq 3",
89 1.1 hikaru "workq 4",
90 1.1 hikaru "workq 5",
91 1.1 hikaru "workq 6",
92 1.1 hikaru "workq 7",
93 1.1 hikaru "workq 8",
94 1.1 hikaru "workq 9",
95 1.1 hikaru "workq 10",
96 1.1 hikaru "workq 11",
97 1.1 hikaru "workq 12",
98 1.1 hikaru "workq 13",
99 1.1 hikaru "workq 14",
100 1.1 hikaru "workq 15",
101 1.1 hikaru "gpio 0",
102 1.1 hikaru "gpio 1",
103 1.1 hikaru "gpio 2",
104 1.1 hikaru "gpio 3",
105 1.1 hikaru "gpio 4",
106 1.1 hikaru "gpio 5",
107 1.1 hikaru "gpio 6",
108 1.1 hikaru "gpio 7",
109 1.1 hikaru "gpio 8",
110 1.1 hikaru "gpio 9",
111 1.1 hikaru "gpio 10",
112 1.1 hikaru "gpio 11",
113 1.1 hikaru "gpio 12",
114 1.1 hikaru "gpio 13",
115 1.1 hikaru "gpio 14",
116 1.1 hikaru "gpio 15",
117 1.1 hikaru "mbox 0-15",
118 1.1 hikaru "mbox 16-31",
119 1.1 hikaru "uart 0",
120 1.1 hikaru "uart 1",
121 1.1 hikaru "pci inta",
122 1.1 hikaru "pci intb",
123 1.1 hikaru "pci intc",
124 1.1 hikaru "pci intd",
125 1.1 hikaru "pci msi 0-15",
126 1.1 hikaru "pci msi 16-31",
127 1.1 hikaru "pci msi 32-47",
128 1.1 hikaru "pci msi 48-63",
129 1.1 hikaru "wdog summary",
130 1.1 hikaru "twsi",
131 1.1 hikaru "rml",
132 1.1 hikaru "trace",
133 1.1 hikaru "gmx drop",
134 1.1 hikaru "reserved",
135 1.1 hikaru "ipd drop",
136 1.1 hikaru "reserved",
137 1.1 hikaru "timer 0",
138 1.1 hikaru "timer 1",
139 1.1 hikaru "timer 2",
140 1.1 hikaru "timer 3",
141 1.1 hikaru "usb",
142 1.1 hikaru "pcm/tdm",
143 1.1 hikaru "mpi/spi",
144 1.1 hikaru "reserved",
145 1.1 hikaru "reserved",
146 1.1 hikaru "reserved",
147 1.1 hikaru "reserved",
148 1.1 hikaru "reserved",
149 1.1 hikaru };
150 1.1 hikaru
151 1.1 hikaru struct octeon_intrhand {
152 1.1 hikaru int (*ih_func)(void *);
153 1.1 hikaru void *ih_arg;
154 1.1 hikaru int ih_irq;
155 1.1 hikaru int ih_ipl;
156 1.1 hikaru };
157 1.1 hikaru
158 1.3 matt #ifdef MULTIPROCESSOR
159 1.3 matt static int octeon_send_ipi(struct cpu_info *, int);
160 1.3 matt static int octeon_ipi_intr(void *);
161 1.3 matt
162 1.3 matt struct octeon_intrhand ipi_intrhands[2] = {
163 1.3 matt [0] = {
164 1.3 matt .ih_func = octeon_ipi_intr,
165 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(15,0),
166 1.3 matt .ih_irq = _CIU_INT_MBOX_15_0_SHIFT,
167 1.3 matt .ih_ipl = IPL_SCHED,
168 1.3 matt },
169 1.3 matt [1] = {
170 1.3 matt .ih_func = octeon_ipi_intr,
171 1.3 matt .ih_arg = (void *)(uintptr_t)__BITS(31,16),
172 1.3 matt .ih_irq = _CIU_INT_MBOX_31_16_SHIFT,
173 1.3 matt .ih_ipl = IPL_HIGH,
174 1.3 matt },
175 1.1 hikaru };
176 1.3 matt #endif
177 1.1 hikaru
178 1.3 matt struct octeon_intrhand *octeon_ciu_intrs[NIRQS] = {
179 1.3 matt #ifdef MULTIPROCESSOR
180 1.3 matt [_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0],
181 1.3 matt [_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1],
182 1.3 matt #endif
183 1.1 hikaru };
184 1.1 hikaru
185 1.3 matt kmutex_t octeon_intr_lock;
186 1.1 hikaru
187 1.3 matt #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
188 1.1 hikaru
189 1.3 matt struct cpu_softc octeon_cpu0_softc = {
190 1.3 matt .cpu_ci = &cpu_info_store,
191 1.3 matt .cpu_int0_sum0 = X(CIU_INT0_SUM0),
192 1.3 matt .cpu_int1_sum0 = X(CIU_INT1_SUM0),
193 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM0),
194 1.1 hikaru
195 1.3 matt .cpu_int0_en0 = X(CIU_INT0_EN0),
196 1.3 matt .cpu_int1_en0 = X(CIU_INT1_EN0),
197 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN00),
198 1.1 hikaru
199 1.3 matt .cpu_int0_en1 = X(CIU_INT0_EN1),
200 1.3 matt .cpu_int1_en1 = X(CIU_INT1_EN1),
201 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN01),
202 1.1 hikaru
203 1.3 matt .cpu_int32_en = X(CIU_INT32_EN0),
204 1.1 hikaru
205 1.4 matt .cpu_wdog = X(CIU_WDOG0),
206 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE0),
207 1.4 matt
208 1.3 matt #ifdef MULTIPROCESSOR
209 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET0),
210 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR0),
211 1.3 matt #endif
212 1.3 matt };
213 1.1 hikaru
214 1.3 matt #ifdef MULTIPROCESSOR
215 1.3 matt struct cpu_softc octeon_cpu1_softc = {
216 1.3 matt .cpu_int0_sum0 = X(CIU_INT2_SUM0),
217 1.3 matt .cpu_int1_sum0 = X(CIU_INT3_SUM0),
218 1.3 matt .cpu_int2_sum0 = X(CIU_INT4_SUM1),
219 1.3 matt
220 1.3 matt .cpu_int0_en0 = X(CIU_INT2_EN0),
221 1.3 matt .cpu_int1_en0 = X(CIU_INT3_EN0),
222 1.3 matt .cpu_int2_en0 = X(CIU_INT4_EN10),
223 1.3 matt
224 1.3 matt .cpu_int0_en1 = X(CIU_INT2_EN1),
225 1.3 matt .cpu_int1_en1 = X(CIU_INT3_EN1),
226 1.3 matt .cpu_int2_en1 = X(CIU_INT4_EN11),
227 1.1 hikaru
228 1.3 matt .cpu_int32_en = X(CIU_INT32_EN1),
229 1.1 hikaru
230 1.4 matt .cpu_wdog = X(CIU_WDOG1),
231 1.4 matt .cpu_pp_poke = X(CIU_PP_POKE1),
232 1.4 matt
233 1.3 matt .cpu_mbox_set = X(CIU_MBOX_SET1),
234 1.3 matt .cpu_mbox_clr = X(CIU_MBOX_CLR1),
235 1.3 matt };
236 1.3 matt #endif
237 1.1 hikaru
238 1.4 matt #ifdef DEBUG
239 1.4 matt static void
240 1.4 matt octeon_mbox_test(void)
241 1.4 matt {
242 1.4 matt const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
243 1.4 matt const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
244 1.4 matt const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
245 1.4 matt const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
246 1.4 matt const uint64_t int_sum0 = X(CIU_INT0_SUM0);
247 1.4 matt const uint64_t int_sum1 = X(CIU_INT2_SUM0);
248 1.4 matt const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT);
249 1.4 matt const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT);
250 1.4 matt
251 1.5 matt mips3_sd(mbox_clr0, ~0ULL);
252 1.5 matt mips3_sd(mbox_clr1, ~0ULL);
253 1.4 matt
254 1.5 matt uint32_t mbox0 = mips3_ld(mbox_set0);
255 1.5 matt uint32_t mbox1 = mips3_ld(mbox_set1);
256 1.4 matt
257 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
258 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
259 1.4 matt
260 1.5 matt mips3_sd(mbox_set0, __BIT(0));
261 1.4 matt
262 1.5 matt mbox0 = mips3_ld(mbox_set0);
263 1.5 matt mbox1 = mips3_ld(mbox_set1);
264 1.4 matt
265 1.4 matt KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
266 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
267 1.4 matt
268 1.5 matt uint64_t sum0 = mips3_ld(int_sum0);
269 1.5 matt uint64_t sum1 = mips3_ld(int_sum1);
270 1.4 matt
271 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
272 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
273 1.4 matt
274 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
275 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
276 1.4 matt
277 1.5 matt mips3_sd(mbox_clr0, mbox0);
278 1.5 matt mbox0 = mips3_ld(mbox_set0);
279 1.4 matt KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
280 1.4 matt
281 1.5 matt mips3_sd(mbox_set0, __BIT(16));
282 1.4 matt
283 1.5 matt mbox0 = mips3_ld(mbox_set0);
284 1.5 matt mbox1 = mips3_ld(mbox_set1);
285 1.4 matt
286 1.4 matt KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
287 1.4 matt KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
288 1.4 matt
289 1.5 matt sum0 = mips3_ld(int_sum0);
290 1.5 matt sum1 = mips3_ld(int_sum1);
291 1.4 matt
292 1.4 matt KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
293 1.4 matt KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
294 1.4 matt
295 1.4 matt KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
296 1.4 matt KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
297 1.4 matt }
298 1.4 matt #endif
299 1.4 matt
300 1.3 matt #undef X
301 1.1 hikaru
302 1.3 matt void
303 1.3 matt octeon_intr_init(struct cpu_info *ci)
304 1.3 matt {
305 1.3 matt const int cpunum = cpu_index(ci);
306 1.3 matt const char * const xname = cpu_name(ci);
307 1.4 matt struct cpu_softc *cpu = ci->ci_softc;
308 1.1 hikaru
309 1.1 hikaru
310 1.3 matt if (ci->ci_cpuid == 0) {
311 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu0_softc);
312 1.4 matt ipl_sr_map = octeon_ipl_sr_map;
313 1.3 matt mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
314 1.3 matt #ifdef MULTIPROCESSOR
315 1.3 matt mips_locoresw.lsw_send_ipi = octeon_send_ipi;
316 1.3 matt #endif
317 1.4 matt #ifdef DEBUG
318 1.4 matt octeon_mbox_test();
319 1.4 matt #endif
320 1.3 matt } else {
321 1.3 matt KASSERT(cpunum == 1);
322 1.3 matt #ifdef MULTIPROCESSOR
323 1.4 matt KASSERT(ci->ci_softc == &octeon_cpu1_softc);
324 1.3 matt #endif
325 1.1 hikaru }
326 1.1 hikaru
327 1.3 matt #ifdef MULTIPROCESSOR
328 1.3 matt // Enable the IPIs
329 1.8 skrll cpu->cpu_int1_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT);
330 1.3 matt cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT);
331 1.1 hikaru #endif
332 1.1 hikaru
333 1.4 matt if (ci->ci_dev)
334 1.4 matt aprint_verbose_dev(ci->ci_dev,
335 1.4 matt "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
336 1.4 matt cpu->cpu_int0_enable0, cpu->cpu_int1_enable0, cpu->cpu_int2_enable0);
337 1.4 matt
338 1.5 matt mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
339 1.5 matt mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
340 1.5 matt mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
341 1.3 matt
342 1.5 matt mips3_sd(cpu->cpu_int32_en, 0);
343 1.3 matt
344 1.5 matt mips3_sd(cpu->cpu_int0_en1, 0); // WDOG IPL2
345 1.5 matt mips3_sd(cpu->cpu_int1_en1, 0); // WDOG IPL3
346 1.5 matt mips3_sd(cpu->cpu_int2_en1, 0); // WDOG IPL4
347 1.1 hikaru
348 1.3 matt #ifdef MULTIPROCESSOR
349 1.5 matt mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
350 1.3 matt #endif
351 1.1 hikaru
352 1.1 hikaru for (size_t i = 0; i < NIRQS; i++) {
353 1.3 matt evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
354 1.3 matt EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
355 1.1 hikaru }
356 1.1 hikaru }
357 1.1 hikaru
358 1.1 hikaru void
359 1.1 hikaru octeon_cal_timer(int corefreq)
360 1.1 hikaru {
361 1.1 hikaru /* Compute the number of cycles per second. */
362 1.1 hikaru curcpu()->ci_cpu_freq = corefreq;
363 1.1 hikaru
364 1.1 hikaru /* Compute the number of ticks for hz. */
365 1.1 hikaru curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
366 1.1 hikaru
367 1.1 hikaru /* Compute the delay divisor and reciprical. */
368 1.1 hikaru curcpu()->ci_divisor_delay =
369 1.1 hikaru ((curcpu()->ci_cpu_freq + 500000) / 1000000);
370 1.1 hikaru #if 0
371 1.1 hikaru MIPS_SET_CI_RECIPRICAL(curcpu());
372 1.1 hikaru #endif
373 1.1 hikaru
374 1.1 hikaru mips3_cp0_count_write(0);
375 1.1 hikaru mips3_cp0_compare_write(0);
376 1.1 hikaru }
377 1.1 hikaru
378 1.1 hikaru void *
379 1.3 matt octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
380 1.1 hikaru {
381 1.1 hikaru struct octeon_intrhand *ih;
382 1.1 hikaru
383 1.1 hikaru if (irq >= NIRQS)
384 1.1 hikaru panic("octeon_intr_establish: bogus IRQ %d", irq);
385 1.3 matt if (ipl < IPL_VM)
386 1.3 matt panic("octeon_intr_establish: bogus IPL %d", ipl);
387 1.1 hikaru
388 1.3 matt ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
389 1.1 hikaru if (ih == NULL)
390 1.1 hikaru return (NULL);
391 1.1 hikaru
392 1.1 hikaru ih->ih_func = func;
393 1.1 hikaru ih->ih_arg = arg;
394 1.1 hikaru ih->ih_irq = irq;
395 1.3 matt ih->ih_ipl = ipl;
396 1.1 hikaru
397 1.3 matt mutex_enter(&octeon_intr_lock);
398 1.1 hikaru
399 1.1 hikaru /*
400 1.3 matt * First, make it known.
401 1.1 hikaru */
402 1.3 matt KASSERTMSG(octeon_ciu_intrs[irq] == NULL, "irq %d in use! (%p)",
403 1.3 matt irq, octeon_ciu_intrs[irq]);
404 1.3 matt
405 1.3 matt octeon_ciu_intrs[irq] = ih;
406 1.3 matt membar_producer();
407 1.1 hikaru
408 1.1 hikaru /*
409 1.1 hikaru * Now enable it.
410 1.1 hikaru */
411 1.3 matt const uint64_t irq_mask = __BIT(irq);
412 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
413 1.3 matt #if MULTIPROCESSOR
414 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
415 1.3 matt #endif
416 1.3 matt
417 1.3 matt switch (ipl) {
418 1.3 matt case IPL_VM:
419 1.3 matt cpu0->cpu_int0_enable0 |= irq_mask;
420 1.5 matt mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
421 1.3 matt break;
422 1.1 hikaru
423 1.3 matt case IPL_SCHED:
424 1.3 matt cpu0->cpu_int1_enable0 |= irq_mask;
425 1.5 matt mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
426 1.3 matt #ifdef MULTIPROCESSOR
427 1.3 matt cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
428 1.5 matt mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
429 1.3 matt #endif
430 1.3 matt break;
431 1.3 matt
432 1.3 matt case IPL_DDB:
433 1.3 matt case IPL_HIGH:
434 1.3 matt cpu0->cpu_int2_enable0 |= irq_mask;
435 1.5 matt mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
436 1.3 matt #ifdef MULTIPROCESSOR
437 1.3 matt cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
438 1.5 matt mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
439 1.3 matt #endif
440 1.3 matt break;
441 1.1 hikaru }
442 1.1 hikaru
443 1.3 matt mutex_exit(&octeon_intr_lock);
444 1.3 matt
445 1.3 matt return ih;
446 1.1 hikaru }
447 1.1 hikaru
448 1.1 hikaru void
449 1.1 hikaru octeon_intr_disestablish(void *cookie)
450 1.1 hikaru {
451 1.3 matt struct octeon_intrhand * const ih = cookie;
452 1.3 matt const int irq = ih->ih_irq & (NIRQS-1);
453 1.3 matt const int ipl = ih->ih_ipl;
454 1.1 hikaru
455 1.3 matt mutex_enter(&octeon_intr_lock);
456 1.1 hikaru
457 1.1 hikaru /*
458 1.3 matt * First disable it.
459 1.1 hikaru */
460 1.3 matt const uint64_t irq_mask = ~__BIT(irq);
461 1.3 matt struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
462 1.3 matt #if MULTIPROCESSOR
463 1.3 matt struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
464 1.3 matt #endif
465 1.3 matt
466 1.3 matt switch (ipl) {
467 1.3 matt case IPL_VM:
468 1.3 matt cpu0->cpu_int0_enable0 &= ~irq_mask;
469 1.5 matt mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
470 1.3 matt break;
471 1.3 matt
472 1.3 matt case IPL_SCHED:
473 1.3 matt cpu0->cpu_int1_enable0 &= ~irq_mask;
474 1.5 matt mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
475 1.3 matt #ifdef MULTIPROCESSOR
476 1.3 matt cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
477 1.5 matt mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
478 1.3 matt #endif
479 1.3 matt break;
480 1.3 matt
481 1.3 matt case IPL_DDB:
482 1.3 matt case IPL_HIGH:
483 1.3 matt cpu0->cpu_int2_enable0 &= ~irq_mask;
484 1.5 matt mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
485 1.3 matt #ifdef MULTIPROCESSOR
486 1.3 matt cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
487 1.5 matt mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
488 1.3 matt #endif
489 1.3 matt break;
490 1.3 matt }
491 1.1 hikaru
492 1.1 hikaru /*
493 1.3 matt * Now remove it since we shouldn't get interrupts for it.
494 1.1 hikaru */
495 1.3 matt octeon_ciu_intrs[irq] = NULL;
496 1.3 matt
497 1.3 matt mutex_exit(&octeon_intr_lock);
498 1.1 hikaru
499 1.3 matt kmem_free(ih, sizeof(*ih));
500 1.1 hikaru }
501 1.1 hikaru
502 1.1 hikaru void
503 1.1 hikaru octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
504 1.1 hikaru {
505 1.3 matt struct cpu_info * const ci = curcpu();
506 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
507 1.3 matt
508 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
509 1.3 matt KASSERT((ipending & ~MIPS_INT_MASK) == 0);
510 1.3 matt KASSERT(ipending & MIPS_HARD_INT_MASK);
511 1.1 hikaru uint64_t hwpend = 0;
512 1.1 hikaru
513 1.3 matt if (ipending & MIPS_INT_MASK_2) {
514 1.5 matt hwpend = mips3_ld(cpu->cpu_int2_sum0)
515 1.3 matt & cpu->cpu_int2_enable0;
516 1.3 matt } else if (ipending & MIPS_INT_MASK_1) {
517 1.5 matt hwpend = mips3_ld(cpu->cpu_int1_sum0)
518 1.3 matt & cpu->cpu_int1_enable0;
519 1.3 matt } else if (ipending & MIPS_INT_MASK_0) {
520 1.5 matt hwpend = mips3_ld(cpu->cpu_int0_sum0)
521 1.3 matt & cpu->cpu_int0_enable0;
522 1.3 matt } else {
523 1.3 matt panic("octeon_iointr: unexpected ipending %#x", ipending);
524 1.3 matt }
525 1.3 matt while (hwpend != 0) {
526 1.3 matt const int irq = ffs64(hwpend) - 1;
527 1.3 matt hwpend &= ~__BIT(irq);
528 1.3 matt
529 1.3 matt struct octeon_intrhand * const ih = octeon_ciu_intrs[irq];
530 1.3 matt cpu->cpu_intr_evs[irq].ev_count++;
531 1.3 matt if (__predict_true(ih != NULL)) {
532 1.3 matt #ifdef MULTIPROCESSOR
533 1.3 matt if (ipl == IPL_VM) {
534 1.3 matt KERNEL_LOCK(1, NULL);
535 1.3 matt #endif
536 1.3 matt (*ih->ih_func)(ih->ih_arg);
537 1.3 matt #ifdef MULTIPROCESSOR
538 1.3 matt KERNEL_UNLOCK_ONE(NULL);
539 1.3 matt } else {
540 1.3 matt (*ih->ih_func)(ih->ih_arg);
541 1.3 matt }
542 1.3 matt #endif
543 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
544 1.3 matt }
545 1.3 matt }
546 1.4 matt KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
547 1.3 matt }
548 1.3 matt
549 1.3 matt #ifdef MULTIPROCESSOR
550 1.3 matt __CTASSERT(NIPIS < 16);
551 1.3 matt
552 1.3 matt int
553 1.3 matt octeon_ipi_intr(void *arg)
554 1.3 matt {
555 1.3 matt struct cpu_info * const ci = curcpu();
556 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
557 1.4 matt uint32_t ipi_mask = (uintptr_t) arg;
558 1.4 matt
559 1.4 matt KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
560 1.4 matt "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
561 1.3 matt
562 1.5 matt ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
563 1.4 matt if (ipi_mask == 0)
564 1.4 matt return 0;
565 1.4 matt
566 1.5 matt mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
567 1.3 matt
568 1.3 matt ipi_mask |= (ipi_mask >> 16);
569 1.3 matt ipi_mask &= __BITS(15,0);
570 1.3 matt
571 1.3 matt KASSERT(ipi_mask < __BIT(NIPIS));
572 1.3 matt
573 1.4 matt #if NWDOG > 0
574 1.4 matt // Handle WDOG requests ourselves.
575 1.4 matt if (ipi_mask & __BIT(IPI_WDOG)) {
576 1.4 matt softint_schedule(cpu->cpu_wdog_sih);
577 1.4 matt atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
578 1.4 matt ipi_mask &= ~__BIT(IPI_WDOG);
579 1.4 matt ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
580 1.4 matt if (__predict_true(ipi_mask == 0))
581 1.4 matt return 1;
582 1.4 matt }
583 1.4 matt #endif
584 1.4 matt
585 1.3 matt /* if the request is clear, it was previously processed */
586 1.3 matt if ((ci->ci_request_ipis & ipi_mask) == 0)
587 1.3 matt return 0;
588 1.3 matt
589 1.3 matt atomic_or_64(&ci->ci_active_ipis, ipi_mask);
590 1.3 matt atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
591 1.3 matt
592 1.3 matt ipi_process(ci, ipi_mask);
593 1.3 matt
594 1.3 matt atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
595 1.3 matt
596 1.3 matt return 1;
597 1.3 matt }
598 1.1 hikaru
599 1.3 matt int
600 1.3 matt octeon_send_ipi(struct cpu_info *ci, int req)
601 1.3 matt {
602 1.3 matt KASSERT(req < NIPIS);
603 1.3 matt if (ci == NULL) {
604 1.4 matt CPU_INFO_ITERATOR cii;
605 1.4 matt for (CPU_INFO_FOREACH(cii, ci)) {
606 1.4 matt if (ci != curcpu()) {
607 1.4 matt octeon_send_ipi(ci, req);
608 1.4 matt }
609 1.4 matt }
610 1.4 matt return 0;
611 1.1 hikaru }
612 1.4 matt KASSERT(cold || ci->ci_softc != NULL);
613 1.4 matt if (ci->ci_softc == NULL)
614 1.4 matt return -1;
615 1.3 matt
616 1.3 matt struct cpu_softc * const cpu = ci->ci_softc;
617 1.3 matt uint64_t ipi_mask = __BIT(req);
618 1.3 matt
619 1.7 skrll atomic_or_64(&ci->ci_request_ipis, ipi_mask);
620 1.7 skrll if (req == IPI_SUSPEND || req == IPI_WDOG) {
621 1.3 matt ipi_mask <<= 16;
622 1.1 hikaru }
623 1.3 matt
624 1.5 matt mips3_sd(cpu->cpu_mbox_set, ipi_mask);
625 1.3 matt return 0;
626 1.1 hikaru }
627 1.3 matt #endif /* MULTIPROCESSOR */
628