Home | History | Annotate | Line # | Download | only in cavium
octeon_intr.c revision 1.18
      1 /*	$NetBSD: octeon_intr.c,v 1.18 2020/07/17 21:59:30 jmcneill Exp $	*/
      2 /*
      3  * Copyright 2001, 2002 Wasabi Systems, Inc.
      4  * All rights reserved.
      5  *
      6  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed for the NetBSD Project by
     19  *      Wasabi Systems, Inc.
     20  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     21  *    or promote products derived from this software without specific prior
     22  *    written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Platform-specific interrupt support for the MIPS Malta.
     39  */
     40 
     41 #include "opt_multiprocessor.h"
     42 
     43 #include "cpunode.h"
     44 #define __INTR_PRIVATE
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.18 2020/07/17 21:59:30 jmcneill Exp $");
     48 
     49 #include <sys/param.h>
     50 #include <sys/cpu.h>
     51 #include <sys/systm.h>
     52 #include <sys/device.h>
     53 #include <sys/intr.h>
     54 #include <sys/kernel.h>
     55 #include <sys/kmem.h>
     56 #include <sys/atomic.h>
     57 
     58 #include <lib/libkern/libkern.h>
     59 
     60 #include <mips/locore.h>
     61 
     62 #include <mips/cavium/dev/octeon_ciureg.h>
     63 #include <mips/cavium/octeonvar.h>
     64 
     65 /*
     66  * This is a mask of bits to clear in the SR when we go to a
     67  * given hardware interrupt priority level.
     68  */
     69 static const struct ipl_sr_map octeon_ipl_sr_map = {
     70     .sr_bits = {
     71 	[IPL_NONE] =		0,
     72 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
     73 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
     74 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
     75 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     76 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     77 	[IPL_DDB] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     78 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     79 	[IPL_HIGH] =		MIPS_INT_MASK,
     80     },
     81 };
     82 
     83 const char * octeon_intrnames[NIRQS] = {
     84 	"workq 0",
     85 	"workq 1",
     86 	"workq 2",
     87 	"workq 3",
     88 	"workq 4",
     89 	"workq 5",
     90 	"workq 6",
     91 	"workq 7",
     92 	"workq 8",
     93 	"workq 9",
     94 	"workq 10",
     95 	"workq 11",
     96 	"workq 12",
     97 	"workq 13",
     98 	"workq 14",
     99 	"workq 15",
    100 	"gpio 0",
    101 	"gpio 1",
    102 	"gpio 2",
    103 	"gpio 3",
    104 	"gpio 4",
    105 	"gpio 5",
    106 	"gpio 6",
    107 	"gpio 7",
    108 	"gpio 8",
    109 	"gpio 9",
    110 	"gpio 10",
    111 	"gpio 11",
    112 	"gpio 12",
    113 	"gpio 13",
    114 	"gpio 14",
    115 	"gpio 15",
    116 	"mbox 0-15",
    117 	"mbox 16-31",
    118 	"uart 0",
    119 	"uart 1",
    120 	"pci inta",
    121 	"pci intb",
    122 	"pci intc",
    123 	"pci intd",
    124 	"pci msi 0-15",
    125 	"pci msi 16-31",
    126 	"pci msi 32-47",
    127 	"pci msi 48-63",
    128 	"wdog summary",
    129 	"twsi",
    130 	"rml",
    131 	"trace",
    132 	"gmx drop",
    133 	"reserved",
    134 	"ipd drop",
    135 	"reserved",
    136 	"timer 0",
    137 	"timer 1",
    138 	"timer 2",
    139 	"timer 3",
    140 	"usb",
    141 	"pcm/tdm",
    142 	"mpi/spi",
    143 	"reserved",
    144 	"reserved",
    145 	"reserved",
    146 	"reserved",
    147 	"reserved",
    148 };
    149 
    150 struct octeon_intrhand {
    151 	int (*ih_func)(void *);
    152 	void *ih_arg;
    153 	int ih_irq;
    154 	int ih_ipl;
    155 };
    156 
    157 #ifdef MULTIPROCESSOR
    158 static int octeon_send_ipi(struct cpu_info *, int);
    159 static int octeon_ipi_intr(void *);
    160 
    161 struct octeon_intrhand ipi_intrhands[2] = {
    162 	[0] = {
    163 		.ih_func = octeon_ipi_intr,
    164 		.ih_arg = (void *)(uintptr_t)__BITS(15,0),
    165 		.ih_irq = CIU_INT_MBOX_15_0,
    166 		.ih_ipl = IPL_SCHED,
    167 	},
    168 	[1] = {
    169 		.ih_func = octeon_ipi_intr,
    170 		.ih_arg = (void *)(uintptr_t)__BITS(31,16),
    171 		.ih_irq = CIU_INT_MBOX_31_16,
    172 		.ih_ipl = IPL_HIGH,
    173 	},
    174 };
    175 
    176 #define	OCTEON_IPI_SCHED(n)	__BIT((n) + 0)
    177 #define	OCTEON_IPI_HIGH(n)	__BIT((n) + 16)
    178 
    179 static uint64_t octeon_ipi_mask[NIPIS] = {
    180 	[IPI_NOP]		= OCTEON_IPI_SCHED(IPI_NOP),
    181 	[IPI_AST]		= OCTEON_IPI_SCHED(IPI_AST),
    182 	[IPI_SHOOTDOWN]		= OCTEON_IPI_SCHED(IPI_SHOOTDOWN),
    183 	[IPI_SYNCICACHE]	= OCTEON_IPI_SCHED(IPI_SYNCICACHE),
    184 	[IPI_KPREEMPT]		= OCTEON_IPI_SCHED(IPI_KPREEMPT),
    185 	[IPI_SUSPEND]		= OCTEON_IPI_HIGH(IPI_SUSPEND),
    186 	[IPI_HALT]		= OCTEON_IPI_HIGH(IPI_HALT),
    187 	[IPI_XCALL]		= OCTEON_IPI_HIGH(IPI_XCALL),
    188 	[IPI_GENERIC]		= OCTEON_IPI_HIGH(IPI_GENERIC),
    189 	[IPI_WDOG]		= OCTEON_IPI_HIGH(IPI_WDOG),
    190 };
    191 #endif
    192 
    193 struct octeon_intrhand *octciu_intrs[NIRQS] = {
    194 #ifdef MULTIPROCESSOR
    195 	[CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
    196 	[CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
    197 #endif
    198 };
    199 
    200 kmutex_t octeon_intr_lock;
    201 
    202 #if defined(MULTIPROCESSOR)
    203 #define	OCTEON_NCPU	MAXCPUS
    204 #else
    205 #define	OCTEON_NCPU	1
    206 #endif
    207 
    208 struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
    209 
    210 static void
    211 octeon_intr_setup(void)
    212 {
    213 	struct cpu_softc *cpu;
    214 	int cpunum;
    215 
    216 #define X(a)	MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
    217 
    218 	for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    219 		cpu = &octeon_cpu_softc[cpunum];
    220 
    221 		cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
    222 		cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
    223 		cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
    224 
    225 		cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
    226 
    227 		cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
    228 		cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
    229 		cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
    230 
    231 		cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
    232 		cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
    233 		cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
    234 
    235 		cpu->cpu_wdog = X(CIU_WDOG(cpunum));
    236 		cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
    237 
    238 #ifdef MULTIPROCESSOR
    239 		cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
    240 		cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
    241 #endif
    242 	}
    243 
    244 #undef X
    245 
    246 }
    247 
    248 void
    249 octeon_intr_init(struct cpu_info *ci)
    250 {
    251 	const int cpunum = cpu_index(ci);
    252 	struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
    253 	const char * const xname = cpu_name(ci);
    254 	int bank;
    255 
    256 	cpu->cpu_ci = ci;
    257 	ci->ci_softc = cpu;
    258 
    259 	KASSERT(cpunum == ci->ci_cpuid);
    260 
    261 	if (ci->ci_cpuid == 0) {
    262 		ipl_sr_map = octeon_ipl_sr_map;
    263 		mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
    264 #ifdef MULTIPROCESSOR
    265 		mips_locoresw.lsw_send_ipi = octeon_send_ipi;
    266 #endif
    267 
    268 		octeon_intr_setup();
    269 	}
    270 
    271 #ifdef MULTIPROCESSOR
    272 	// Enable the IPIs
    273 	cpu->cpu_ip3_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
    274 	cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
    275 #endif
    276 
    277 	if (ci->ci_dev) {
    278 		for (bank = 0; bank < NBANKS; bank++) {
    279 			aprint_verbose_dev(ci->ci_dev,
    280 			    "enabling intr masks %u "
    281 			    " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
    282 			    bank,
    283 			    cpu->cpu_ip2_enable[bank],
    284 			    cpu->cpu_ip3_enable[bank],
    285 			    cpu->cpu_ip4_enable[bank]);
    286 		}
    287 	}
    288 
    289 	for (bank = 0; bank < NBANKS; bank++) {
    290 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    291 		mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    292 		mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    293 	}
    294 
    295 #ifdef MULTIPROCESSOR
    296 	mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
    297 #endif
    298 
    299 	for (int i = 0; i < NIRQS; i++) {
    300 		if (octeon_intrnames[i] == NULL)
    301 			octeon_intrnames[i] = kmem_asprintf("irq %d", i);
    302 		evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
    303 		    EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
    304 	}
    305 }
    306 
    307 void
    308 octeon_cal_timer(int corefreq)
    309 {
    310 	/* Compute the number of cycles per second. */
    311 	curcpu()->ci_cpu_freq = corefreq;
    312 
    313 	/* Compute the number of ticks for hz. */
    314 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
    315 
    316 	/* Compute the delay divisor and reciprical. */
    317 	curcpu()->ci_divisor_delay =
    318 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
    319 #if 0
    320 	MIPS_SET_CI_RECIPRICAL(curcpu());
    321 #endif
    322 
    323 	mips3_cp0_count_write(0);
    324 	mips3_cp0_compare_write(0);
    325 }
    326 
    327 void *
    328 octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
    329 {
    330 	struct octeon_intrhand *ih;
    331 	struct cpu_softc *cpu;
    332 	int cpunum;
    333 
    334 	if (irq >= NIRQS)
    335 		panic("octeon_intr_establish: bogus IRQ %d", irq);
    336 	if (ipl < IPL_VM)
    337 		panic("octeon_intr_establish: bogus IPL %d", ipl);
    338 
    339 	ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
    340 	if (ih == NULL)
    341 		return (NULL);
    342 
    343 	ih->ih_func = func;
    344 	ih->ih_arg = arg;
    345 	ih->ih_irq = irq;
    346 	ih->ih_ipl = ipl;
    347 
    348 	mutex_enter(&octeon_intr_lock);
    349 
    350 	/*
    351 	 * First, make it known.
    352 	 */
    353 	KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
    354 	    irq, octciu_intrs[irq]);
    355 
    356 	octciu_intrs[irq] = ih;
    357 	membar_producer();
    358 
    359 	/*
    360 	 * Now enable it.
    361 	 */
    362 	const int bank = irq / 64;
    363 	const uint64_t irq_mask = __BIT(irq % 64);
    364 
    365 	switch (ipl) {
    366 	case IPL_VM:
    367 		cpu = &octeon_cpu_softc[0];
    368 		cpu->cpu_ip2_enable[bank] |= irq_mask;
    369 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    370 		break;
    371 
    372 	case IPL_SCHED:
    373 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    374 			cpu = &octeon_cpu_softc[cpunum];
    375 			if (cpu->cpu_ci == NULL)
    376 				break;
    377 			cpu->cpu_ip3_enable[bank] |= irq_mask;
    378 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    379 		}
    380 		break;
    381 
    382 	case IPL_DDB:
    383 	case IPL_HIGH:
    384 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    385 			cpu = &octeon_cpu_softc[cpunum];
    386 			if (cpu->cpu_ci == NULL)
    387 				break;
    388 			cpu->cpu_ip4_enable[bank] |= irq_mask;
    389 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    390 		}
    391 		break;
    392 	}
    393 
    394 	mutex_exit(&octeon_intr_lock);
    395 
    396 	return ih;
    397 }
    398 
    399 void
    400 octeon_intr_disestablish(void *cookie)
    401 {
    402 	struct octeon_intrhand * const ih = cookie;
    403 	struct cpu_softc *cpu;
    404 	const int irq = ih->ih_irq & (NIRQS-1);
    405 	const int ipl = ih->ih_ipl;
    406 	int cpunum;
    407 
    408 	mutex_enter(&octeon_intr_lock);
    409 
    410 	/*
    411 	 * First disable it.
    412 	 */
    413 	const int bank = irq / 64;
    414 	const uint64_t irq_mask = ~__BIT(irq % 64);
    415 
    416 	switch (ipl) {
    417 	case IPL_VM:
    418 		cpu = &octeon_cpu_softc[0];
    419 		cpu->cpu_ip2_enable[bank] &= ~irq_mask;
    420 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    421 		break;
    422 
    423 	case IPL_SCHED:
    424 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    425 			cpu = &octeon_cpu_softc[cpunum];
    426 			if (cpu->cpu_ci == NULL)
    427 				break;
    428 			cpu->cpu_ip3_enable[bank] &= ~irq_mask;
    429 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    430 		}
    431 		break;
    432 
    433 	case IPL_DDB:
    434 	case IPL_HIGH:
    435 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    436 			cpu = &octeon_cpu_softc[cpunum];
    437 			if (cpu->cpu_ci == NULL)
    438 				break;
    439 			cpu->cpu_ip4_enable[bank] &= ~irq_mask;
    440 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    441 		}
    442 		break;
    443 	}
    444 
    445 	/*
    446 	 * Now remove it since we shouldn't get interrupts for it.
    447 	 */
    448 	octciu_intrs[irq] = NULL;
    449 
    450 	mutex_exit(&octeon_intr_lock);
    451 
    452 	kmem_free(ih, sizeof(*ih));
    453 }
    454 
    455 void
    456 octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
    457 {
    458 	struct cpu_info * const ci = curcpu();
    459 	struct cpu_softc * const cpu = ci->ci_softc;
    460 	int bank;
    461 
    462 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    463 	KASSERT((ipending & ~MIPS_INT_MASK) == 0);
    464 	KASSERT(ipending & MIPS_HARD_INT_MASK);
    465 	uint64_t hwpend[2] = { 0, 0 };
    466 
    467 	const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
    468 
    469 	if (ipending & MIPS_INT_MASK_2) {
    470 		hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
    471 		    & cpu->cpu_ip4_enable[0];
    472 		hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
    473 	} else if (ipending & MIPS_INT_MASK_1) {
    474 		hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
    475 		    & cpu->cpu_ip3_enable[0];
    476 		hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
    477 	} else if (ipending & MIPS_INT_MASK_0) {
    478 		hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
    479 		    & cpu->cpu_ip2_enable[0];
    480 		hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
    481 	} else {
    482 		panic("octeon_iointr: unexpected ipending %#x", ipending);
    483 	}
    484 	for (bank = 0; bank <= 1; bank++) {
    485 		while (hwpend[bank] != 0) {
    486 			const int bit = ffs64(hwpend[bank]) - 1;
    487 			const int irq = (bank * 64) + bit;
    488 			hwpend[bank] &= ~__BIT(bit);
    489 
    490 			struct octeon_intrhand * const ih = octciu_intrs[irq];
    491 			cpu->cpu_intr_evs[irq].ev_count++;
    492 			if (__predict_true(ih != NULL)) {
    493 #ifdef MULTIPROCESSOR
    494 				if (ipl == IPL_VM) {
    495 					KERNEL_LOCK(1, NULL);
    496 #endif
    497 					(*ih->ih_func)(ih->ih_arg);
    498 #ifdef MULTIPROCESSOR
    499 					KERNEL_UNLOCK_ONE(NULL);
    500 				} else {
    501 					(*ih->ih_func)(ih->ih_arg);
    502 				}
    503 #endif
    504 				KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    505 			}
    506 		}
    507 	}
    508 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    509 }
    510 
    511 #ifdef MULTIPROCESSOR
    512 __CTASSERT(NIPIS < 16);
    513 
    514 int
    515 octeon_ipi_intr(void *arg)
    516 {
    517 	struct cpu_info * const ci = curcpu();
    518 	struct cpu_softc * const cpu = ci->ci_softc;
    519 	uint32_t ipi_mask = (uintptr_t) arg;
    520 
    521 	KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
    522 	    "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
    523 
    524 	ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
    525 	if (ipi_mask == 0)
    526 		return 0;
    527 
    528 	mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
    529 
    530 	KASSERT(ipi_mask < __BIT(NIPIS));
    531 
    532 #if NWDOG > 0
    533 	// Handle WDOG requests ourselves.
    534 	if (ipi_mask & __BIT(IPI_WDOG)) {
    535 		softint_schedule(cpu->cpu_wdog_sih);
    536 		atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
    537 		ipi_mask &= ~__BIT(IPI_WDOG);
    538 		ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
    539 		if (__predict_true(ipi_mask == 0))
    540 			return 1;
    541 	}
    542 #endif
    543 
    544 	/* if the request is clear, it was previously processed */
    545 	if ((ci->ci_request_ipis & ipi_mask) == 0)
    546 		return 0;
    547 
    548 	atomic_or_64(&ci->ci_active_ipis, ipi_mask);
    549 	atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
    550 
    551 	ipi_process(ci, ipi_mask);
    552 
    553 	atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
    554 
    555 	return 1;
    556 }
    557 
    558 int
    559 octeon_send_ipi(struct cpu_info *ci, int req)
    560 {
    561 	KASSERT(req < NIPIS);
    562 	if (ci == NULL) {
    563 		CPU_INFO_ITERATOR cii;
    564 		for (CPU_INFO_FOREACH(cii, ci)) {
    565 			if (ci != curcpu()) {
    566 				octeon_send_ipi(ci, req);
    567 			}
    568 		}
    569 		return 0;
    570 	}
    571 	KASSERT(cold || ci->ci_softc != NULL);
    572 	if (ci->ci_softc == NULL)
    573 		return -1;
    574 
    575 	struct cpu_softc * const cpu = ci->ci_softc;
    576 	const uint64_t ipi_mask = octeon_ipi_mask[req];
    577 
    578 	atomic_or_64(&ci->ci_request_ipis, ipi_mask);
    579 
    580 	mips3_sd(cpu->cpu_mbox_set, ipi_mask);
    581 
    582 	return 0;
    583 }
    584 #endif	/* MULTIPROCESSOR */
    585