Home | History | Annotate | Line # | Download | only in cavium
octeon_intr.c revision 1.23
      1 /*	$NetBSD: octeon_intr.c,v 1.23 2020/08/17 21:00:29 jmcneill Exp $	*/
      2 /*
      3  * Copyright 2001, 2002 Wasabi Systems, Inc.
      4  * All rights reserved.
      5  *
      6  * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed for the NetBSD Project by
     19  *      Wasabi Systems, Inc.
     20  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     21  *    or promote products derived from this software without specific prior
     22  *    written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Platform-specific interrupt support for the MIPS Malta.
     39  */
     40 
     41 #include "opt_multiprocessor.h"
     42 
     43 #include "cpunode.h"
     44 #define __INTR_PRIVATE
     45 
     46 #include <sys/cdefs.h>
     47 __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.23 2020/08/17 21:00:29 jmcneill Exp $");
     48 
     49 #include <sys/param.h>
     50 #include <sys/cpu.h>
     51 #include <sys/systm.h>
     52 #include <sys/device.h>
     53 #include <sys/intr.h>
     54 #include <sys/kernel.h>
     55 #include <sys/kmem.h>
     56 #include <sys/atomic.h>
     57 
     58 #include <lib/libkern/libkern.h>
     59 
     60 #include <mips/locore.h>
     61 
     62 #include <mips/cavium/dev/octeon_ciureg.h>
     63 #include <mips/cavium/octeonvar.h>
     64 
     65 /*
     66  * XXX:
     67  * Force all interrupts (except clock intrs and IPIs) to be routed
     68  * through cpu0 until MP on MIPS is more stable.
     69  */
     70 #define	OCTEON_CPU0_INTERRUPTS
     71 
     72 
     73 /*
     74  * This is a mask of bits to clear in the SR when we go to a
     75  * given hardware interrupt priority level.
     76  */
     77 static const struct ipl_sr_map octeon_ipl_sr_map = {
     78     .sr_bits = {
     79 	[IPL_NONE] =		0,
     80 	[IPL_SOFTCLOCK] =	MIPS_SOFT_INT_MASK_0,
     81 	[IPL_SOFTNET] =		MIPS_SOFT_INT_MASK,
     82 	[IPL_VM] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
     83 	[IPL_SCHED] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     84 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     85 	[IPL_DDB] =		MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
     86 				    | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
     87 	[IPL_HIGH] =		MIPS_INT_MASK,
     88     },
     89 };
     90 
     91 static const char * octeon_intrnames[NIRQS] = {
     92 	"workq 0",
     93 	"workq 1",
     94 	"workq 2",
     95 	"workq 3",
     96 	"workq 4",
     97 	"workq 5",
     98 	"workq 6",
     99 	"workq 7",
    100 	"workq 8",
    101 	"workq 9",
    102 	"workq 10",
    103 	"workq 11",
    104 	"workq 12",
    105 	"workq 13",
    106 	"workq 14",
    107 	"workq 15",
    108 	"gpio 0",
    109 	"gpio 1",
    110 	"gpio 2",
    111 	"gpio 3",
    112 	"gpio 4",
    113 	"gpio 5",
    114 	"gpio 6",
    115 	"gpio 7",
    116 	"gpio 8",
    117 	"gpio 9",
    118 	"gpio 10",
    119 	"gpio 11",
    120 	"gpio 12",
    121 	"gpio 13",
    122 	"gpio 14",
    123 	"gpio 15",
    124 	"mbox 0-15",
    125 	"mbox 16-31",
    126 	"uart 0",
    127 	"uart 1",
    128 	"pci inta",
    129 	"pci intb",
    130 	"pci intc",
    131 	"pci intd",
    132 	"pci msi 0-15",
    133 	"pci msi 16-31",
    134 	"pci msi 32-47",
    135 	"pci msi 48-63",
    136 	"wdog summary",
    137 	"twsi",
    138 	"rml",
    139 	"trace",
    140 	"gmx drop",
    141 	"reserved",
    142 	"ipd drop",
    143 	"reserved",
    144 	"timer 0",
    145 	"timer 1",
    146 	"timer 2",
    147 	"timer 3",
    148 	"usb",
    149 	"pcm/tdm",
    150 	"mpi/spi",
    151 	"reserved",
    152 	"reserved",
    153 	"reserved",
    154 	"reserved",
    155 	"reserved",
    156 };
    157 
    158 struct octeon_intrhand {
    159 	int (*ih_func)(void *);
    160 	void *ih_arg;
    161 	int ih_irq;
    162 	int ih_ipl;
    163 };
    164 
    165 #ifdef MULTIPROCESSOR
    166 static int octeon_send_ipi(struct cpu_info *, int);
    167 static int octeon_ipi_intr(void *);
    168 
    169 static struct octeon_intrhand ipi_intrhands[1] = {
    170 	[0] = {
    171 		.ih_func = octeon_ipi_intr,
    172 		.ih_arg = (void *)(uintptr_t)__BITS(15,0),
    173 		.ih_irq = CIU_INT_MBOX_15_0,
    174 		.ih_ipl = IPL_HIGH,
    175 	},
    176 	[1] = {
    177 		.ih_func = octeon_ipi_intr,
    178 		.ih_arg = (void *)(uintptr_t)__BITS(31,16),
    179 		.ih_irq = CIU_INT_MBOX_31_16,
    180 		.ih_ipl = IPL_SCHED,
    181 	},
    182 };
    183 
    184 static int ipi_prio[NIPIS] = {
    185 	[IPI_NOP] = IPL_HIGH,
    186 	[IPI_AST] = IPL_HIGH,
    187 	[IPI_SHOOTDOWN] = IPL_SCHED,
    188 	[IPI_SYNCICACHE] = IPL_HIGH,
    189 	[IPI_KPREEMPT] = IPL_HIGH,
    190 	[IPI_SUSPEND] = IPL_HIGH,
    191 	[IPI_HALT] = IPL_HIGH,
    192 	[IPI_XCALL] = IPL_HIGH,
    193 	[IPI_GENERIC] = IPL_HIGH,
    194 	[IPI_WDOG] = IPL_HIGH,
    195 };
    196 
    197 #endif
    198 
    199 static struct octeon_intrhand *octciu_intrs[NIRQS] = {
    200 #ifdef MULTIPROCESSOR
    201 	[CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
    202 	[CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
    203 #endif
    204 };
    205 
    206 static kmutex_t octeon_intr_lock;
    207 
    208 #if defined(MULTIPROCESSOR)
    209 #define	OCTEON_NCPU	MAXCPUS
    210 #else
    211 #define	OCTEON_NCPU	1
    212 #endif
    213 
    214 struct cpu_softc octeon_cpu_softc[OCTEON_NCPU];
    215 
    216 static void
    217 octeon_intr_setup(void)
    218 {
    219 	struct cpu_softc *cpu;
    220 	int cpunum;
    221 
    222 #define X(a)	MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
    223 
    224 	for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    225 		cpu = &octeon_cpu_softc[cpunum];
    226 
    227 		cpu->cpu_ip2_sum0 = X(CIU_IP2_SUM0(cpunum));
    228 		cpu->cpu_ip3_sum0 = X(CIU_IP3_SUM0(cpunum));
    229 		cpu->cpu_ip4_sum0 = X(CIU_IP4_SUM0(cpunum));
    230 
    231 		cpu->cpu_int_sum1 = X(CIU_INT_SUM1);
    232 
    233 		cpu->cpu_ip2_en[0] = X(CIU_IP2_EN0(cpunum));
    234 		cpu->cpu_ip3_en[0] = X(CIU_IP3_EN0(cpunum));
    235 		cpu->cpu_ip4_en[0] = X(CIU_IP4_EN0(cpunum));
    236 
    237 		cpu->cpu_ip2_en[1] = X(CIU_IP2_EN1(cpunum));
    238 		cpu->cpu_ip3_en[1] = X(CIU_IP3_EN1(cpunum));
    239 		cpu->cpu_ip4_en[1] = X(CIU_IP4_EN1(cpunum));
    240 
    241 		cpu->cpu_wdog = X(CIU_WDOG(cpunum));
    242 		cpu->cpu_pp_poke = X(CIU_PP_POKE(cpunum));
    243 
    244 #ifdef MULTIPROCESSOR
    245 		cpu->cpu_mbox_set = X(CIU_MBOX_SET(cpunum));
    246 		cpu->cpu_mbox_clr = X(CIU_MBOX_CLR(cpunum));
    247 #endif
    248 	}
    249 
    250 #undef X
    251 
    252 }
    253 
    254 void
    255 octeon_intr_init(struct cpu_info *ci)
    256 {
    257 	const int cpunum = cpu_index(ci);
    258 	struct cpu_softc *cpu = &octeon_cpu_softc[cpunum];
    259 	const char * const xname = cpu_name(ci);
    260 	int bank;
    261 
    262 	cpu->cpu_ci = ci;
    263 	ci->ci_softc = cpu;
    264 
    265 	KASSERT(cpunum == ci->ci_cpuid);
    266 
    267 	if (ci->ci_cpuid == 0) {
    268 		ipl_sr_map = octeon_ipl_sr_map;
    269 		mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
    270 #ifdef MULTIPROCESSOR
    271 		mips_locoresw.lsw_send_ipi = octeon_send_ipi;
    272 #endif
    273 
    274 		octeon_intr_setup();
    275 	}
    276 
    277 #ifdef MULTIPROCESSOR
    278 	// Enable the IPIs
    279 	cpu->cpu_ip4_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
    280 	cpu->cpu_ip3_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
    281 #endif
    282 
    283 	if (ci->ci_dev) {
    284 		for (bank = 0; bank < NBANKS; bank++) {
    285 			aprint_verbose_dev(ci->ci_dev,
    286 			    "enabling intr masks %u "
    287 			    " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
    288 			    bank,
    289 			    cpu->cpu_ip2_enable[bank],
    290 			    cpu->cpu_ip3_enable[bank],
    291 			    cpu->cpu_ip4_enable[bank]);
    292 		}
    293 	}
    294 
    295 	for (bank = 0; bank < NBANKS; bank++) {
    296 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    297 		mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    298 		mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    299 	}
    300 
    301 #ifdef MULTIPROCESSOR
    302 	mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
    303 #endif
    304 
    305 	for (int i = 0; i < NIRQS; i++) {
    306 		if (octeon_intrnames[i] == NULL)
    307 			octeon_intrnames[i] = kmem_asprintf("irq %d", i);
    308 		evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
    309 		    EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
    310 	}
    311 }
    312 
    313 void
    314 octeon_cal_timer(int corefreq)
    315 {
    316 	/* Compute the number of cycles per second. */
    317 	curcpu()->ci_cpu_freq = corefreq;
    318 
    319 	/* Compute the number of ticks for hz. */
    320 	curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
    321 
    322 	/* Compute the delay divisor and reciprical. */
    323 	curcpu()->ci_divisor_delay =
    324 	    ((curcpu()->ci_cpu_freq + 500000) / 1000000);
    325 #if 0
    326 	MIPS_SET_CI_RECIPRICAL(curcpu());
    327 #endif
    328 
    329 	mips3_cp0_count_write(0);
    330 	mips3_cp0_compare_write(0);
    331 }
    332 
    333 void *
    334 octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
    335 {
    336 	struct octeon_intrhand *ih;
    337 	struct cpu_softc *cpu;
    338 #ifndef OCTEON_CPU0_INTERRUPTS
    339 	int cpunum;
    340 #endif
    341 
    342 	if (irq >= NIRQS)
    343 		panic("octeon_intr_establish: bogus IRQ %d", irq);
    344 	if (ipl < IPL_VM)
    345 		panic("octeon_intr_establish: bogus IPL %d", ipl);
    346 
    347 	ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
    348 	if (ih == NULL)
    349 		return (NULL);
    350 
    351 	ih->ih_func = func;
    352 	ih->ih_arg = arg;
    353 	ih->ih_irq = irq;
    354 	ih->ih_ipl = ipl;
    355 
    356 	mutex_enter(&octeon_intr_lock);
    357 
    358 	/*
    359 	 * First, make it known.
    360 	 */
    361 	KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
    362 	    irq, octciu_intrs[irq]);
    363 
    364 	octciu_intrs[irq] = ih;
    365 	membar_producer();
    366 
    367 	/*
    368 	 * Now enable it.
    369 	 */
    370 	const int bank = irq / 64;
    371 	const uint64_t irq_mask = __BIT(irq % 64);
    372 
    373 	switch (ipl) {
    374 	case IPL_VM:
    375 		cpu = &octeon_cpu_softc[0];
    376 		cpu->cpu_ip2_enable[bank] |= irq_mask;
    377 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    378 		break;
    379 
    380 	case IPL_SCHED:
    381 #ifdef OCTEON_CPU0_INTERRUPTS
    382 		cpu = &octeon_cpu_softc[0];
    383 		cpu->cpu_ip3_enable[bank] |= irq_mask;
    384 		mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    385 #else	/* OCTEON_CPU0_INTERRUPTS */
    386 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    387 			cpu = &octeon_cpu_softc[cpunum];
    388 			if (cpu->cpu_ci == NULL)
    389 				break;
    390 			cpu->cpu_ip3_enable[bank] |= irq_mask;
    391 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    392 		}
    393 #endif	/* OCTEON_CPU0_INTERRUPTS */
    394 		break;
    395 
    396 	case IPL_DDB:
    397 	case IPL_HIGH:
    398 #ifdef OCTEON_CPU0_INTERRUPTS
    399 		cpu = &octeon_cpu_softc[0];
    400 		cpu->cpu_ip4_enable[bank] |= irq_mask;
    401 		mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    402 #else	/* OCTEON_CPU0_INTERRUPTS */
    403 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    404 			cpu = &octeon_cpu_softc[cpunum];
    405 			if (cpu->cpu_ci == NULL)
    406 				break;
    407 			cpu->cpu_ip4_enable[bank] |= irq_mask;
    408 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    409 		}
    410 #endif	/* OCTEON_CPU0_INTERRUPTS */
    411 		break;
    412 	}
    413 
    414 	mutex_exit(&octeon_intr_lock);
    415 
    416 	return ih;
    417 }
    418 
    419 void
    420 octeon_intr_disestablish(void *cookie)
    421 {
    422 	struct octeon_intrhand * const ih = cookie;
    423 	struct cpu_softc *cpu;
    424 	const int irq = ih->ih_irq & (NIRQS-1);
    425 	const int ipl = ih->ih_ipl;
    426 	int cpunum;
    427 
    428 	mutex_enter(&octeon_intr_lock);
    429 
    430 	/*
    431 	 * First disable it.
    432 	 */
    433 	const int bank = irq / 64;
    434 	const uint64_t irq_mask = ~__BIT(irq % 64);
    435 
    436 	switch (ipl) {
    437 	case IPL_VM:
    438 		cpu = &octeon_cpu_softc[0];
    439 		cpu->cpu_ip2_enable[bank] &= ~irq_mask;
    440 		mips3_sd(cpu->cpu_ip2_en[bank], cpu->cpu_ip2_enable[bank]);
    441 		break;
    442 
    443 	case IPL_SCHED:
    444 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    445 			cpu = &octeon_cpu_softc[cpunum];
    446 			if (cpu->cpu_ci == NULL)
    447 				break;
    448 			cpu->cpu_ip3_enable[bank] &= ~irq_mask;
    449 			mips3_sd(cpu->cpu_ip3_en[bank], cpu->cpu_ip3_enable[bank]);
    450 		}
    451 		break;
    452 
    453 	case IPL_DDB:
    454 	case IPL_HIGH:
    455 		for (cpunum = 0; cpunum < OCTEON_NCPU; cpunum++) {
    456 			cpu = &octeon_cpu_softc[cpunum];
    457 			if (cpu->cpu_ci == NULL)
    458 				break;
    459 			cpu->cpu_ip4_enable[bank] &= ~irq_mask;
    460 			mips3_sd(cpu->cpu_ip4_en[bank], cpu->cpu_ip4_enable[bank]);
    461 		}
    462 		break;
    463 	}
    464 
    465 	/*
    466 	 * Now remove it since we shouldn't get interrupts for it.
    467 	 */
    468 	octciu_intrs[irq] = NULL;
    469 
    470 	mutex_exit(&octeon_intr_lock);
    471 
    472 	kmem_free(ih, sizeof(*ih));
    473 }
    474 
    475 void
    476 octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
    477 {
    478 	struct cpu_info * const ci = curcpu();
    479 	struct cpu_softc * const cpu = ci->ci_softc;
    480 	int bank;
    481 
    482 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    483 	KASSERT((ipending & ~MIPS_INT_MASK) == 0);
    484 	KASSERT(ipending & MIPS_HARD_INT_MASK);
    485 	uint64_t hwpend[2] = { 0, 0 };
    486 
    487 	const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
    488 
    489 	if (ipending & MIPS_INT_MASK_2) {
    490 		hwpend[0] = mips3_ld(cpu->cpu_ip4_sum0)
    491 		    & cpu->cpu_ip4_enable[0];
    492 		hwpend[1] = sum1 & cpu->cpu_ip4_enable[1];
    493 	} else if (ipending & MIPS_INT_MASK_1) {
    494 		hwpend[0] = mips3_ld(cpu->cpu_ip3_sum0)
    495 		    & cpu->cpu_ip3_enable[0];
    496 		hwpend[1] = sum1 & cpu->cpu_ip3_enable[1];
    497 	} else if (ipending & MIPS_INT_MASK_0) {
    498 		hwpend[0] = mips3_ld(cpu->cpu_ip2_sum0)
    499 		    & cpu->cpu_ip2_enable[0];
    500 		hwpend[1] = sum1 & cpu->cpu_ip2_enable[1];
    501 	} else {
    502 		panic("octeon_iointr: unexpected ipending %#x", ipending);
    503 	}
    504 	for (bank = 0; bank <= 1; bank++) {
    505 		while (hwpend[bank] != 0) {
    506 			const int bit = ffs64(hwpend[bank]) - 1;
    507 			const int irq = (bank * 64) + bit;
    508 			hwpend[bank] &= ~__BIT(bit);
    509 
    510 			struct octeon_intrhand * const ih = octciu_intrs[irq];
    511 			cpu->cpu_intr_evs[irq].ev_count++;
    512 			if (__predict_true(ih != NULL)) {
    513 #ifdef MULTIPROCESSOR
    514 				if (ipl == IPL_VM) {
    515 					KERNEL_LOCK(1, NULL);
    516 #endif
    517 					(*ih->ih_func)(ih->ih_arg);
    518 #ifdef MULTIPROCESSOR
    519 					KERNEL_UNLOCK_ONE(NULL);
    520 				} else {
    521 					(*ih->ih_func)(ih->ih_arg);
    522 				}
    523 #endif
    524 				KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    525 			}
    526 		}
    527 	}
    528 	KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
    529 }
    530 
    531 #ifdef MULTIPROCESSOR
    532 __CTASSERT(NIPIS < 16);
    533 
    534 int
    535 octeon_ipi_intr(void *arg)
    536 {
    537 	struct cpu_info * const ci = curcpu();
    538 	struct cpu_softc * const cpu = ci->ci_softc;
    539 	const uint32_t mbox_mask = (uintptr_t) arg;
    540 	uint32_t ipi_mask = mbox_mask;
    541 
    542 	KASSERTMSG((mbox_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
    543 	    "mbox_mask %#"PRIx32" cpl %d", mbox_mask, ci->ci_cpl);
    544 
    545 	ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
    546 	if (ipi_mask == 0)
    547 		return 0;
    548 
    549 	mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
    550 
    551 	KASSERT(__SHIFTOUT(ipi_mask, mbox_mask) < __BIT(NIPIS));
    552 
    553 #if NWDOG > 0
    554 	// Handle WDOG requests ourselves.
    555 	if (ipi_mask & __BIT(IPI_WDOG)) {
    556 		softint_schedule(cpu->cpu_wdog_sih);
    557 		atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
    558 		ipi_mask &= ~__BIT(IPI_WDOG);
    559 		ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
    560 		if (__predict_true(ipi_mask == 0))
    561 			return 1;
    562 	}
    563 #endif
    564 
    565 	/* if the request is clear, it was previously processed */
    566 	if ((ci->ci_request_ipis & ipi_mask) == 0)
    567 		return 0;
    568 
    569 	atomic_or_64(&ci->ci_active_ipis, ipi_mask);
    570 	atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
    571 
    572 	ipi_process(ci, __SHIFTOUT(ipi_mask, mbox_mask));
    573 
    574 	atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
    575 
    576 	return 1;
    577 }
    578 
    579 int
    580 octeon_send_ipi(struct cpu_info *ci, int req)
    581 {
    582 	KASSERT(req < NIPIS);
    583 	if (ci == NULL) {
    584 		CPU_INFO_ITERATOR cii;
    585 		for (CPU_INFO_FOREACH(cii, ci)) {
    586 			if (ci != curcpu()) {
    587 				octeon_send_ipi(ci, req);
    588 			}
    589 		}
    590 		return 0;
    591 	}
    592 	KASSERT(cold || ci->ci_softc != NULL);
    593 	if (ci->ci_softc == NULL)
    594 		return -1;
    595 
    596 	struct cpu_softc * const cpu = ci->ci_softc;
    597 	const u_int ipi_shift = ipi_prio[req] == IPL_SCHED ? 16 : 0;
    598 	const uint32_t ipi_mask = __BIT(req + ipi_shift);
    599 
    600 	atomic_or_64(&ci->ci_request_ipis, ipi_mask);
    601 
    602 	mips3_sd(cpu->cpu_mbox_set, ipi_mask);
    603 
    604 	return 0;
    605 }
    606 #endif	/* MULTIPROCESSOR */
    607