octeon_intr.c revision 1.6 1 /* $NetBSD: octeon_intr.c,v 1.6 2016/07/12 06:13:39 skrll Exp $ */
2 /*
3 * Copyright 2001, 2002 Wasabi Systems, Inc.
4 * All rights reserved.
5 *
6 * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed for the NetBSD Project by
19 * Wasabi Systems, Inc.
20 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 * or promote products derived from this software without specific prior
22 * written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Platform-specific interrupt support for the MIPS Malta.
39 */
40
41 #include "opt_octeon.h"
42 #include "opt_multiprocessor.h"
43
44 #include "cpunode.h"
45 #define __INTR_PRIVATE
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.6 2016/07/12 06:13:39 skrll Exp $");
49
50 #include <sys/param.h>
51 #include <sys/cpu.h>
52 #include <sys/systm.h>
53 #include <sys/device.h>
54 #include <sys/intr.h>
55 #include <sys/kernel.h>
56 #include <sys/kmem.h>
57 #include <sys/atomic.h>
58
59 #include <lib/libkern/libkern.h>
60
61 #include <mips/locore.h>
62
63 #include <mips/cavium/dev/octeon_ciureg.h>
64 #include <mips/cavium/octeonvar.h>
65
66 /*
67 * This is a mask of bits to clear in the SR when we go to a
68 * given hardware interrupt priority level.
69 */
70 static const struct ipl_sr_map octeon_ipl_sr_map = {
71 .sr_bits = {
72 [IPL_NONE] = 0,
73 [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
74 [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
75 [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
76 [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
77 | MIPS_INT_MASK_5,
78 [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
79 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
80 [IPL_HIGH] = MIPS_INT_MASK,
81 },
82 };
83
84 const char * const octeon_intrnames[NIRQS] = {
85 "workq 0",
86 "workq 1",
87 "workq 2",
88 "workq 3",
89 "workq 4",
90 "workq 5",
91 "workq 6",
92 "workq 7",
93 "workq 8",
94 "workq 9",
95 "workq 10",
96 "workq 11",
97 "workq 12",
98 "workq 13",
99 "workq 14",
100 "workq 15",
101 "gpio 0",
102 "gpio 1",
103 "gpio 2",
104 "gpio 3",
105 "gpio 4",
106 "gpio 5",
107 "gpio 6",
108 "gpio 7",
109 "gpio 8",
110 "gpio 9",
111 "gpio 10",
112 "gpio 11",
113 "gpio 12",
114 "gpio 13",
115 "gpio 14",
116 "gpio 15",
117 "mbox 0-15",
118 "mbox 16-31",
119 "uart 0",
120 "uart 1",
121 "pci inta",
122 "pci intb",
123 "pci intc",
124 "pci intd",
125 "pci msi 0-15",
126 "pci msi 16-31",
127 "pci msi 32-47",
128 "pci msi 48-63",
129 "wdog summary",
130 "twsi",
131 "rml",
132 "trace",
133 "gmx drop",
134 "reserved",
135 "ipd drop",
136 "reserved",
137 "timer 0",
138 "timer 1",
139 "timer 2",
140 "timer 3",
141 "usb",
142 "pcm/tdm",
143 "mpi/spi",
144 "reserved",
145 "reserved",
146 "reserved",
147 "reserved",
148 "reserved",
149 };
150
151 struct octeon_intrhand {
152 int (*ih_func)(void *);
153 void *ih_arg;
154 int ih_irq;
155 int ih_ipl;
156 };
157
158 #ifdef MULTIPROCESSOR
159 static int octeon_send_ipi(struct cpu_info *, int);
160 static int octeon_ipi_intr(void *);
161
162 struct octeon_intrhand ipi_intrhands[2] = {
163 [0] = {
164 .ih_func = octeon_ipi_intr,
165 .ih_arg = (void *)(uintptr_t)__BITS(15,0),
166 .ih_irq = _CIU_INT_MBOX_15_0_SHIFT,
167 .ih_ipl = IPL_SCHED,
168 },
169 [1] = {
170 .ih_func = octeon_ipi_intr,
171 .ih_arg = (void *)(uintptr_t)__BITS(31,16),
172 .ih_irq = _CIU_INT_MBOX_31_16_SHIFT,
173 .ih_ipl = IPL_HIGH,
174 },
175 };
176 #endif
177
178 struct octeon_intrhand *octeon_ciu_intrs[NIRQS] = {
179 #ifdef MULTIPROCESSOR
180 [_CIU_INT_MBOX_15_0_SHIFT] = &ipi_intrhands[0],
181 [_CIU_INT_MBOX_31_16_SHIFT] = &ipi_intrhands[1],
182 #endif
183 };
184
185 kmutex_t octeon_intr_lock;
186
187 #define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
188
189 struct cpu_softc octeon_cpu0_softc = {
190 .cpu_ci = &cpu_info_store,
191 .cpu_int0_sum0 = X(CIU_INT0_SUM0),
192 .cpu_int1_sum0 = X(CIU_INT1_SUM0),
193 .cpu_int2_sum0 = X(CIU_INT4_SUM0),
194
195 .cpu_int0_en0 = X(CIU_INT0_EN0),
196 .cpu_int1_en0 = X(CIU_INT1_EN0),
197 .cpu_int2_en0 = X(CIU_INT4_EN00),
198
199 .cpu_int0_en1 = X(CIU_INT0_EN1),
200 .cpu_int1_en1 = X(CIU_INT1_EN1),
201 .cpu_int2_en1 = X(CIU_INT4_EN01),
202
203 .cpu_int32_en = X(CIU_INT32_EN0),
204
205 .cpu_wdog = X(CIU_WDOG0),
206 .cpu_pp_poke = X(CIU_PP_POKE0),
207
208 #ifdef MULTIPROCESSOR
209 .cpu_mbox_set = X(CIU_MBOX_SET0),
210 .cpu_mbox_clr = X(CIU_MBOX_CLR0),
211 #endif
212 };
213
214 #ifdef MULTIPROCESSOR
215 struct cpu_softc octeon_cpu1_softc = {
216 .cpu_int0_sum0 = X(CIU_INT2_SUM0),
217 .cpu_int1_sum0 = X(CIU_INT3_SUM0),
218 .cpu_int2_sum0 = X(CIU_INT4_SUM1),
219
220 .cpu_int0_en0 = X(CIU_INT2_EN0),
221 .cpu_int1_en0 = X(CIU_INT3_EN0),
222 .cpu_int2_en0 = X(CIU_INT4_EN10),
223
224 .cpu_int0_en1 = X(CIU_INT2_EN1),
225 .cpu_int1_en1 = X(CIU_INT3_EN1),
226 .cpu_int2_en1 = X(CIU_INT4_EN11),
227
228 .cpu_int32_en = X(CIU_INT32_EN1),
229
230 .cpu_wdog = X(CIU_WDOG1),
231 .cpu_pp_poke = X(CIU_PP_POKE1),
232
233 .cpu_mbox_set = X(CIU_MBOX_SET1),
234 .cpu_mbox_clr = X(CIU_MBOX_CLR1),
235 };
236 #endif
237
238 #ifdef DEBUG
239 static void
240 octeon_mbox_test(void)
241 {
242 const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
243 const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
244 const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
245 const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
246 const uint64_t int_sum0 = X(CIU_INT0_SUM0);
247 const uint64_t int_sum1 = X(CIU_INT2_SUM0);
248 const uint64_t sum_mbox_lo = __BIT(_CIU_INT_MBOX_15_0_SHIFT);
249 const uint64_t sum_mbox_hi = __BIT(_CIU_INT_MBOX_31_16_SHIFT);
250
251 mips3_sd(mbox_clr0, ~0ULL);
252 mips3_sd(mbox_clr1, ~0ULL);
253
254 uint32_t mbox0 = mips3_ld(mbox_set0);
255 uint32_t mbox1 = mips3_ld(mbox_set1);
256
257 KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
258 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
259
260 mips3_sd(mbox_set0, __BIT(0));
261
262 mbox0 = mips3_ld(mbox_set0);
263 mbox1 = mips3_ld(mbox_set1);
264
265 KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
266 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
267
268 uint64_t sum0 = mips3_ld(int_sum0);
269 uint64_t sum1 = mips3_ld(int_sum1);
270
271 KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
272 KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
273
274 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
275 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
276
277 mips3_sd(mbox_clr0, mbox0);
278 mbox0 = mips3_ld(mbox_set0);
279 KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
280
281 mips3_sd(mbox_set0, __BIT(16));
282
283 mbox0 = mips3_ld(mbox_set0);
284 mbox1 = mips3_ld(mbox_set1);
285
286 KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
287 KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
288
289 sum0 = mips3_ld(int_sum0);
290 sum1 = mips3_ld(int_sum1);
291
292 KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
293 KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
294
295 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
296 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
297 }
298 #endif
299
300 #undef X
301
302 void
303 octeon_intr_init(struct cpu_info *ci)
304 {
305 const int cpunum = cpu_index(ci);
306 const char * const xname = cpu_name(ci);
307 struct cpu_softc *cpu = ci->ci_softc;
308
309
310 if (ci->ci_cpuid == 0) {
311 KASSERT(ci->ci_softc == &octeon_cpu0_softc);
312 ipl_sr_map = octeon_ipl_sr_map;
313 mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
314 #ifdef MULTIPROCESSOR
315 mips_locoresw.lsw_send_ipi = octeon_send_ipi;
316 #endif
317 #ifdef DEBUG
318 octeon_mbox_test();
319 #endif
320 } else {
321 KASSERT(cpunum == 1);
322 #ifdef MULTIPROCESSOR
323 KASSERT(ci->ci_softc == &octeon_cpu1_softc);
324 #endif
325 }
326
327 #ifdef MULTIPROCESSOR
328 // Enable the IPIs
329 cpu->cpu_int0_enable0 |= __BIT(_CIU_INT_MBOX_15_0_SHIFT);
330 cpu->cpu_int2_enable0 |= __BIT(_CIU_INT_MBOX_31_16_SHIFT);
331 #endif
332
333 if (ci->ci_dev)
334 aprint_verbose_dev(ci->ci_dev,
335 "enabling intr masks %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
336 cpu->cpu_int0_enable0, cpu->cpu_int1_enable0, cpu->cpu_int2_enable0);
337
338 mips3_sd(cpu->cpu_int0_en0, cpu->cpu_int0_enable0);
339 mips3_sd(cpu->cpu_int1_en0, cpu->cpu_int1_enable0);
340 mips3_sd(cpu->cpu_int2_en0, cpu->cpu_int2_enable0);
341
342 mips3_sd(cpu->cpu_int32_en, 0);
343
344 mips3_sd(cpu->cpu_int0_en1, 0); // WDOG IPL2
345 mips3_sd(cpu->cpu_int1_en1, 0); // WDOG IPL3
346 mips3_sd(cpu->cpu_int2_en1, 0); // WDOG IPL4
347
348 #ifdef MULTIPROCESSOR
349 mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
350 #endif
351
352 for (size_t i = 0; i < NIRQS; i++) {
353 evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
354 EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
355 }
356 }
357
358 void
359 octeon_cal_timer(int corefreq)
360 {
361 /* Compute the number of cycles per second. */
362 curcpu()->ci_cpu_freq = corefreq;
363
364 /* Compute the number of ticks for hz. */
365 curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
366
367 /* Compute the delay divisor and reciprical. */
368 curcpu()->ci_divisor_delay =
369 ((curcpu()->ci_cpu_freq + 500000) / 1000000);
370 #if 0
371 MIPS_SET_CI_RECIPRICAL(curcpu());
372 #endif
373
374 mips3_cp0_count_write(0);
375 mips3_cp0_compare_write(0);
376 }
377
378 void *
379 octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
380 {
381 struct octeon_intrhand *ih;
382
383 if (irq >= NIRQS)
384 panic("octeon_intr_establish: bogus IRQ %d", irq);
385 if (ipl < IPL_VM)
386 panic("octeon_intr_establish: bogus IPL %d", ipl);
387
388 ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
389 if (ih == NULL)
390 return (NULL);
391
392 ih->ih_func = func;
393 ih->ih_arg = arg;
394 ih->ih_irq = irq;
395 ih->ih_ipl = ipl;
396
397 mutex_enter(&octeon_intr_lock);
398
399 /*
400 * First, make it known.
401 */
402 KASSERTMSG(octeon_ciu_intrs[irq] == NULL, "irq %d in use! (%p)",
403 irq, octeon_ciu_intrs[irq]);
404
405 octeon_ciu_intrs[irq] = ih;
406 membar_producer();
407
408 /*
409 * Now enable it.
410 */
411 const uint64_t irq_mask = __BIT(irq);
412 struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
413 #if MULTIPROCESSOR
414 struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
415 #endif
416
417 switch (ipl) {
418 case IPL_VM:
419 cpu0->cpu_int0_enable0 |= irq_mask;
420 mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
421 break;
422
423 case IPL_SCHED:
424 cpu0->cpu_int1_enable0 |= irq_mask;
425 mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
426 #ifdef MULTIPROCESSOR
427 cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
428 mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
429 #endif
430 break;
431
432 case IPL_DDB:
433 case IPL_HIGH:
434 cpu0->cpu_int2_enable0 |= irq_mask;
435 mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
436 #ifdef MULTIPROCESSOR
437 cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
438 mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
439 #endif
440 break;
441 }
442
443 mutex_exit(&octeon_intr_lock);
444
445 return ih;
446 }
447
448 void
449 octeon_intr_disestablish(void *cookie)
450 {
451 struct octeon_intrhand * const ih = cookie;
452 const int irq = ih->ih_irq & (NIRQS-1);
453 const int ipl = ih->ih_ipl;
454
455 mutex_enter(&octeon_intr_lock);
456
457 /*
458 * First disable it.
459 */
460 const uint64_t irq_mask = ~__BIT(irq);
461 struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
462 #if MULTIPROCESSOR
463 struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
464 #endif
465
466 switch (ipl) {
467 case IPL_VM:
468 cpu0->cpu_int0_enable0 &= ~irq_mask;
469 mips3_sd(cpu0->cpu_int0_en0, cpu0->cpu_int0_enable0);
470 break;
471
472 case IPL_SCHED:
473 cpu0->cpu_int1_enable0 &= ~irq_mask;
474 mips3_sd(cpu0->cpu_int1_en0, cpu0->cpu_int1_enable0);
475 #ifdef MULTIPROCESSOR
476 cpu1->cpu_int1_enable0 = cpu0->cpu_int1_enable0;
477 mips3_sd(cpu1->cpu_int1_en0, cpu1->cpu_int1_enable0);
478 #endif
479 break;
480
481 case IPL_DDB:
482 case IPL_HIGH:
483 cpu0->cpu_int2_enable0 &= ~irq_mask;
484 mips3_sd(cpu0->cpu_int2_en0, cpu0->cpu_int2_enable0);
485 #ifdef MULTIPROCESSOR
486 cpu1->cpu_int2_enable0 = cpu0->cpu_int2_enable0;
487 mips3_sd(cpu1->cpu_int2_en0, cpu1->cpu_int2_enable0);
488 #endif
489 break;
490 }
491
492 /*
493 * Now remove it since we shouldn't get interrupts for it.
494 */
495 octeon_ciu_intrs[irq] = NULL;
496
497 mutex_exit(&octeon_intr_lock);
498
499 kmem_free(ih, sizeof(*ih));
500 }
501
502 void
503 octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
504 {
505 struct cpu_info * const ci = curcpu();
506 struct cpu_softc * const cpu = ci->ci_softc;
507
508 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
509 KASSERT((ipending & ~MIPS_INT_MASK) == 0);
510 KASSERT(ipending & MIPS_HARD_INT_MASK);
511 uint64_t hwpend = 0;
512
513 if (ipending & MIPS_INT_MASK_2) {
514 hwpend = mips3_ld(cpu->cpu_int2_sum0)
515 & cpu->cpu_int2_enable0;
516 } else if (ipending & MIPS_INT_MASK_1) {
517 hwpend = mips3_ld(cpu->cpu_int1_sum0)
518 & cpu->cpu_int1_enable0;
519 } else if (ipending & MIPS_INT_MASK_0) {
520 hwpend = mips3_ld(cpu->cpu_int0_sum0)
521 & cpu->cpu_int0_enable0;
522 } else {
523 panic("octeon_iointr: unexpected ipending %#x", ipending);
524 }
525 while (hwpend != 0) {
526 const int irq = ffs64(hwpend) - 1;
527 hwpend &= ~__BIT(irq);
528
529 struct octeon_intrhand * const ih = octeon_ciu_intrs[irq];
530 cpu->cpu_intr_evs[irq].ev_count++;
531 if (__predict_true(ih != NULL)) {
532 #ifdef MULTIPROCESSOR
533 if (ipl == IPL_VM) {
534 KERNEL_LOCK(1, NULL);
535 #endif
536 (*ih->ih_func)(ih->ih_arg);
537 #ifdef MULTIPROCESSOR
538 KERNEL_UNLOCK_ONE(NULL);
539 } else {
540 (*ih->ih_func)(ih->ih_arg);
541 }
542 #endif
543 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
544 }
545 }
546 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
547 }
548
549 #ifdef MULTIPROCESSOR
550 __CTASSERT(NIPIS < 16);
551
552 int
553 octeon_ipi_intr(void *arg)
554 {
555 struct cpu_info * const ci = curcpu();
556 struct cpu_softc * const cpu = ci->ci_softc;
557 uint32_t ipi_mask = (uintptr_t) arg;
558
559 KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
560 "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
561
562 ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
563 if (ipi_mask == 0)
564 return 0;
565
566 mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
567
568 ipi_mask |= (ipi_mask >> 16);
569 ipi_mask &= __BITS(15,0);
570
571 KASSERT(ipi_mask < __BIT(NIPIS));
572
573 #if NWDOG > 0
574 // Handle WDOG requests ourselves.
575 if (ipi_mask & __BIT(IPI_WDOG)) {
576 softint_schedule(cpu->cpu_wdog_sih);
577 atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
578 ipi_mask &= ~__BIT(IPI_WDOG);
579 ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
580 if (__predict_true(ipi_mask == 0))
581 return 1;
582 }
583 #endif
584
585 /* if the request is clear, it was previously processed */
586 if ((ci->ci_request_ipis & ipi_mask) == 0)
587 return 0;
588
589 atomic_or_64(&ci->ci_active_ipis, ipi_mask);
590 atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
591
592 ipi_process(ci, ipi_mask);
593
594 atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
595
596 return 1;
597 }
598
599 int
600 octeon_send_ipi(struct cpu_info *ci, int req)
601 {
602 KASSERT(req < NIPIS);
603 if (ci == NULL) {
604 CPU_INFO_ITERATOR cii;
605 for (CPU_INFO_FOREACH(cii, ci)) {
606 if (ci != curcpu()) {
607 octeon_send_ipi(ci, req);
608 }
609 }
610 return 0;
611 }
612 KASSERT(cold || ci->ci_softc != NULL);
613 if (ci->ci_softc == NULL)
614 return -1;
615
616 struct cpu_softc * const cpu = ci->ci_softc;
617 uint64_t ipi_mask = __BIT(req);
618
619 if (__BIT(req) == (__BIT(IPI_SUSPEND)|__BIT(IPI_WDOG))) {
620 ipi_mask <<= 16;
621 }
622
623 mips3_sd(cpu->cpu_mbox_set, ipi_mask);
624 return 0;
625 }
626 #endif /* MULTIPROCESSOR */
627